R1233zd(E) !short name 102687-65-0 !CAS number trans-1-chloro-3,3,3-trifluoro-1-propene !full name CF3CH=CHCl !chemical formula {C3H2ClF3} HFO-1233zd(E) !synonym 130.4962 !molecular weight [g/mol] 195.15 !triple point temperature [K] 291.413 !normal boiling point [K] 439.6 !critical temperature [K] 3623.7 !critical pressure [kPa] 3.68 !critical density [mol/L] 0.3025 !acentric factor 1.44 !dipole moment [Debye]; calculated by Arno Laesecke, NIST, 2012. IIR !default reference state 8.0 !version number 3163 !UN Number halocb !family 1. !GWP 16000. !RCL (ppm v/v, ASHRAE Standard 34, 2010) A1 !Safety Group (ASHRAE Standard 34, 2010) ! compiled at NIST Physical and Chemical Properties Division, Boulder, Colorado ! 08-01-12 EWL, original version ! 10-15-12 EWL, revision based on measured data to date (p-rho-T, p_sat) ! 11-16-12 MLH, added transport predictions ! 11-22-13 MLH, revised surface tension model ! 02-10-15 EWL, update equation of state based on corrected pvt and psat data ! 03-09-15 EWL, add new surface tension equation ! 11-06-15 EWL, refit ancillary equations #EOS !equation of state specification FEQ Helmholtz equation of state for R1233zd(E) of Mondejar et al. (2015). ?LITERATURE REFERENCE \ ?Mondejar, M.E., McLinden, M.O., Lemmon, E.W. ?"Thermodynamic Properties of Trans-1-chloro-3,3,3-trifluoropropene ? (R1233zd(E)): Vapor Pressure, p-rho-T Data, Speed of Sound Measurements ? and Equation of State," ? to be submitted to J. Chem. Eng. Data, 2015. ?\ !end of info section 195.15 !lower temperature limit [K] 550. !upper temperature limit [K] 100000. !upper pressure limit [kPa] 11.41 !maximum density [mol/L] CPP !pointer to Cp0 model 130.4962 !molecular weight [g/mol] 195.15 !triple point temperature [K] 0.2733 !pressure at triple point [kPa] 11.404 !density at triple point [mol/L] 291.413 !normal boiling point temperature [K] 0.3025 !acentric factor 439.6 3623.7 3.68 !Tc [K], pc [kPa], rhoc [mol/L] 439.6 3.68 !reducing parameters [K, mol/L] 8.3144621 !gas constant [J/mol-K] 10 4 5 12 0 0 !# terms, # coeff/term for: "normal" terms, critical, spare 0.0478487 1. 4. 0. !a(i),t(i),d(i),l(i) 1.60644 0.26 1. 0. -2.27161 1.02 1. 0. -0.530687 0.7 2. 0. 0.169641 0.4 3. 0. -1.85458 1.46 1. 2. -0.321916 2.3 3. 2. 0.636411 0.66 2. 1. -0.121482 2.7 2. 2. -0.0262755 1.19 7. 1. 2.37362 1.62 1. 2. 2. -0.748 -1.29 0.89 0.508 0. 0. 0. -0.901771 1.13 1. 2. 2. -1.473 -1.61 1.13 0.366 0. 0. 0. -0.455962 1.7 3. 2. 2. -1.39 -0.8 0.7 0.38 0. 0. 0. -0.602941 1.35 2. 2. 2. -0.86 -1.34 0.91 0.773 0. 0. 0. -0.0594311 1.5 2. 2. 2. -1.8 -0.49 1.2 1.17 0. 0. 0. #AUX !auxiliary model specification CPP ideal gas heat capacity function of Mondejar et al. (2013) ?LITERATURE REFERENCE \ ?\ !end of info section 1. !lower temperature limit [K] 5000. !upper temperature limit [K] 0.0 !upper pressure limit [kPa] 0.0 !maximum density [mol/L] 1.0 8.3144621 !reducing parameters for T, Cp0 1 2 0 0 0 0 0 !Nterms: polynomial, exponential, cosh, sinh 4.0 0.0 11.795 630.0 8.6848 2230.0 @EOS !equation of state specification FE1 Helmholtz equation of state for R1233zd(E) of Mondejar et al. (2012). ?LITERATURE REFERENCE \ ?Mondejar, M.E., McLinden, M.O., Lemmon, E.W. ? preliminary equation of state, 2012. ?\ !end of info section 195.15 !lower temperature limit [K] 550. !upper temperature limit [K] 100000. !upper pressure limit [kPa] 11.41 !maximum density [mol/L] CP1 !pointer to Cp0 model 130.4961896 !molecular weight [g/mol] 195.15 !triple point temperature [K] 0.25 !pressure at triple point [kPa] 11.41 !density at triple point [mol/L] 291.47 !normal boiling point temperature [K] 0.305 !acentric factor 439.6 3624.0 3.68 !Tc [K], pc [kPa], rhoc [mol/L] 439.6 3.68 !reducing parameters [K, mol/L] 8.3144621 !gas constant [J/mol-K] 10 4 5 12 0 0 !# terms, # coeff/term for: "normal" terms, critical, spare 0.0478487 1. 4. 0. !a(i),t(i),d(i),l(i) 1.60644 0.26 1. 0. -2.27161 1.02 1. 0. -0.530687 0.7 2. 0. 0.169641 0.4 3. 0. -1.85458 1.46 1. 2. -0.321916 2.3 3. 2. 0.636411 0.66 2. 1. -0.121482 2.7 2. 2. -0.0262755 1.19 7. 1. 2.37362 1.62 1. 2. 2. -0.748 -1.29 0.89 0.508 0. 0. 0. -0.901771 1.13 1. 2. 2. -1.473 -1.61 1.13 0.366 0. 0. 0. -0.455962 1.7 3. 2. 2. -1.39 -0.8 0.7 0.38 0. 0. 0. -0.602941 1.35 2. 2. 2. -0.86 -1.34 0.91 0.773 0. 0. 0. -0.0594311 1.5 2. 2. 2. -1.8 -0.49 1.2 1.17 0. 0. 0. #AUX !auxiliary model specification CP1 ideal gas heat capacity function of Mondejar et al. (2012) ?LITERATURE REFERENCE \ ?\ !end of info section 1. !lower temperature limit [K] 5000. !upper temperature limit [K] 0.0 !upper pressure limit [kPa] 0.0 !maximum density [mol/L] 1.0 8.3144621 !reducing parameters for T, Cp0 1 2 0 0 0 0 0 !Nterms: polynomial, exponential, cosh, sinh 4.0 0.0 11.795 630.0 8.6848 2230.0 #TCX !thermal conductivity model specification TC1 pure fluid thermal conductivity model of Perkins and Huber 2012 ?LITERATURE REFERENCE \ ?\ ? The uncertainty in thermal conductivity is 20%. No liquid phase data were available. ? This is a predictive model, not standard reference data. ?\ !end of info section 195. !lower temperature limit [K] 550. !upper temperature limit [K] 100000. !upper pressure limit [kPa] 11.5 !maximum density [mol/L] 2 0 !# terms for dilute gas function: numerator, denominator 1.0 1.0 !reducing parameters for T, tcx from Perkins 2012 preliminary -0.0110984d0 0.00d0 !coeff, power in T 7.23675d-5 1.00d0 12 0 !# terms for background gas function: numerator, denominator based on 123 438.75 3.6903789 1.0 !reducing par for T (= Tc), rho (= Dc), tcx 0.642894d-1 -1.5 1.0 0.0 !coeff, powers of Tau=T/Tc (= -powers of Tc/T), del, spare for future use -0.530474d-01 -2.00d0 1.00d0 0.00d0 0.453522d-04 -6.00d0 1.00d0 0.00d0 -0.139928d+00 0.00d0 2.00d0 0.00d0 0.166540d+00 -0.50d0 2.00d0 0.00d0 -0.162656d-01 -1.50d0 2.00d0 0.00d0 0.136819d+00 0.00d0 3.00d0 0.00d0 -0.183291d+00 -0.50d0 3.00d0 0.00d0 0.357146d-01 -1.50d0 3.00d0 0.00d0 -0.231210d-01 0.00d0 4.00d0 0.00d0 0.341945d-01 -0.50d0 4.00d0 0.00d0 -0.757341d-02 -1.50d0 4.00d0 0.00d0 TK3 !pointer to critical enhancement auxiliary function @TRN !transport model specification ECS Extended Corresponding States model (R134a reference); limited data available; predictive mode ?LITERATURE REFERENCES \ ?Huber, M.L., Laesecke, A., and Perkins, R.A., Model for the viscosity ? and thermal conductivity of refrigerants, including a new correlation ? for the viscosity of R134a, Ind.Eng.Chem.Res. 42: 3163-3178 (2003). ?\ ?DATA SOURCES FOR VISCOSITY\ ? Hulse, R., Basu, R., Signh, R. and Thomas, R., "Physical Properties of HCFO-1233ZD(E)" ? paper presented at 18th Symposium on Thermophysical Fluids, Boulder CO, June24-29, 2012 ? ?DATA SOURCES FOR THERMAL CONDUCTIVITY\ ? preliminary vapor phase data of R.A. Perkins, NIST, Boulder 2012 ? ? ******* Predictive mode********* ? ? Estimated uncertainty 20 % ? ?\ ?The Lennard-Jones parameters are estimated using the method of Chung.\ ?\ !end of info section 195. !lower temperature limit [K] 550. !upper temperature limit [K] 100000. !upper pressure limit [kPa] 11.5 !maximum density [mol/L] FEQ R134a.fld VS1 !model for reference fluid viscosity TC1 !model for reference fluid thermal conductivity 0 !Lennard-Jones flag (0 or 1) (0 => use estimates) 0.5234 !Lennard-Jones coefficient sigma [nm] for ECS 348.4 !Lennard-Jones coefficient epsilon/kappa [K] 1 0 0 !number of terms in f_int term in Eucken correlation, spare1, spare 2 1.3200d-3 0.0 0.0 0.0 !coeff, power of T, spare 1, spare 2 3 0 0 !number of terms in psi (visc shape factor): poly,spare1,spare2 1.14551 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare -1.83121d-2 0.0 1.0 0.0 !coeff, power of Tr, power of Dr, spare -5.49599d-3 0.0 2.0 0.0 !coeff, power of Tr, power of Dr, spare 1 0 0 !number of terms in phi (thermal cond. shape factor):poly,spare1,spare2 1.0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare TK3 !pointer to critical enhancement auxiliary function #AUX !thermal conductivity critical enhancement model TK3 simplified thermal conductivity critical enhancement of Perkins, Sengers, Abdulagatov and Huber ?LITERATURE REFERENCE \ ?Perkins, R.A., Sengers, J.V., Abdulagatov, I.M. and Huber, M.L., ? "Critical thermal-conductivity enhancment in molecular fluids" ? manuscript in preparation for Int. J. Thermophysics, 2012. ?\ !end of info section 195. !lower temperature limit [K] 550. !upper temperature limit [K] 100000. !upper pressure limit [kPa] 11.5 !maximum density [mol/L] 9 0 0 0 !# terms: CO2-terms, spare, spare, spare 1.0 1.0 1.0 !reducing par for T, rho, tcx (mW/m-K) 0.630d0 !gnu (universal exponent) 1.239d0 !gamma (universal exponent) 1.02d0 !R0 (universal amplitude) 0.063d0 !z (universal exponent--not used for t.c., only viscosity) 1.00d0 !c (constant in viscosity eqn = 1/[2 - (alpha + gamma)/(2*nu)], but often set to 1) 0.212747d-9 !xi0 (amplitude) [m] 0.05797 !gam0 (amplitude) [-] 6.37308d-10 !qd_inverse (modified effective cutoff parameter) [m] 658.1255d+00 !tref (reference temperature)=1.5*Tc [K] #STN !surface tension specification ST1 surface tension model of Kondou et al. (2015) ?LITERATURE REFERENCE \ ?Kondou, C., Nagata, R., Nii, N., Koyama, S., Higashi, Y., ? Surface Tension of Low GWP Refrigerants R1243zf, R1234ze(Z), and R1233zd(E) ? International Journal of Refrigeration, 2015. ?\ ?Critical temperature was changed to match that from EOS ?\ !end of info section 0.0 !lower temperature limit [K] 439.6 !upper temperature limit [K] 0.0 !(dummy) upper pressure limit 0.0 !(dummy) maximum density 1 !number of terms in surface tension model 439.6 !critical temperature used in fit (dummy) 0.06195 1.277 !sigma0 and n #PS !vapor pressure equation PS5 vapor pressure equation of Mondejar et al. (2013). ?LITERATURE REFERENCE \ ?See EOS ?\ !end of info section 0. !lower temperature limit [K] 439.6 !upper temperature limit [K] 0.0 !(dummy) upper pressure limit 0.0 !(dummy) maximum density 439.6 3623.7 !reducing parameters 5 0 0 0 0 0 !number of terms in equation -7.5635 1.0 !coefficients and exponents 1.8668 1.5 -2.1880 2.4 -3.4571 4.5 -2.4340 14.0 #DL !saturated liquid density equation DL1 saturated liquid density equation of Mondejar et al. (2013). ?LITERATURE REFERENCE \ ?See EOS ?\ !end of info section 0. !lower temperature limit [K] 439.6 !upper temperature limit [K] 0.0 !(dummy) upper pressure limit 0.0 !(dummy) maximum density 439.6 3.68 !reducing parameters 5 0 0 0 0 0 !number of terms in equation 7.0378 0.53 !coefficients and exponents -14.550 0.85 21.707 1.2 -18.338 1.6 7.1635 2.0 #DV !saturated vapor density equation DV3 saturated vapor density equation of Mondejar et al. (2013). ?LITERATURE REFERENCE \ ?See EOS ?\ !end of info section 0. !lower temperature limit [K] 439.6 !upper temperature limit [K] 0.0 !(dummy) upper pressure limit 0.0 !(dummy) maximum density 439.6 3.68 !reducing parameters 6 0 0 0 0 0 !number of terms in equation -6.1834 0.52 !coefficients and exponents 6.8270 0.85 -11.226 1.2 -22.406 3.4 -58.384 7.0 -146.92 15.0 @END c 1 2 3 4 5 6 7 8 c2345678901234567890123456789012345678901234567890123456789012345678901234567890