METADATA AND NUMERICAL DATA CAPTURE: Energy of Combustion $\Delta_c u^o (J/g)$

Guided Data Capture (GDC)

This tutorial describes METADATA AND NUMERICAL DATA CAPTURE: for **Energy of Combustion in O₂(g)** with the Guided Data Capture (GDC) software.

NOTE:

The tutorials proceed sequentially to ease the descriptions. It is not necessary to enter *all* compounds before entering *all* samples, etc.

Compounds, samples, properties, etc., can be added or modified at any time.

However, the hierarchy must be maintained (i.e., a property cannot be entered, if there is no associated sample or compound.)

The experimental data used in this example is from:

700

J. Chem. Eng. Data 2002, 47, 700-714

Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for *trans*-Methyl Cinnamate, α-Methyl Cinnamaldehyde, Methyl Methacrylate, 1-Nonyne, Trimethylacetic Acid, Trimethylacetic Anhydride, and Ethyl Trimethyl Acetate

W. V. Steele,*^{,†} R. D. Chirico,[‡] A. B. Cowell, S. E. Knipmeyer, and A. Nguyen

BDM Petroleum Technologies, P.O. Box 2543, Bartlesville, Oklahoma 74005-2543

The results of a study aimed at improvement of group-contribution methodology for estimation of thermodynamic properties of organic substances are reported. Specific weaknesses where particular groupcontribution terms were unknown, or estimated because of lack of experimental data, are addressed by experimental studies of enthalpies of combustion in the condensed phase, vapor-pressure measurements, and differential scanning calorimetric heat-capacity measurements. Ideal-gas and condensed-phase enthalpies of formation of *trans*-methyl cinnamate, α -methyl cinnamaldehyde, methyl methacrylate, 1-nonyne, trimethylacetic acid, trimethylacetic anhydride, and ethyl trimethyl acetate are reported. Enthalpies of fusion were determined for trans-methyl cinnamate and trimethylacetic acid. Two-phase (solid + vapor) or (liquid + vapor) heat capacities were determined from 300 K to the critical region or earlier decomposition temperature for all the compounds. For ethyl trimethyl acetate, the values of the critical temperature and critical density were determined from the DSC results and the corresponding critical pressure was derived from the fitting procedures. The results of all the measurements were combined to derive a series of thermophysical properties including critical temperature, critical density, critical pressure, acentric factor, enthalpies of vaporization (restricted to within ± 50 K of the temperature range of the vapor pressures), and heat capacities along the saturation line. Wagner-type vapor-pressure equations were derived for each compound. Group-additivity enthalpy of formation parameters and strain energies useful in the application of ideal-gas group-contribution correlations were derived.

Energy of Combustion in $O_2(g)$ methyl methacrylate at T = 298.15 K and p = 101.3 kPa

Table 5. Energy of Combustion Results ($T = 298.15$ K and $p^{\circ} = 101.325$ kPa) ^{<i>a.b</i>}				
compd	$\{(\Delta_c U_m^e/M)(\text{compd})\}/(J \cdot g^{-1})$	$\langle \{(\Delta_c U^p_m/M)(\text{compd})\}/(J \cdot g^{-1}) \rangle$		
methyl methacrylate -27 298.7,	27 306.2, -27 301.7, -27 305.4, -27 299.4, -27 298.7, -27 297.6	$-27\ 301.1\pm1.3$		
-31 187.3, -31 190	, -31 187.5, -31 180.3, -31 180.2, -31 180.3, -31 187.7, -31 189.5,).0	-31 187.9 ± 0.5		
α-methyl cinnamaldehyde -36 168.7, -26 150	-36157.5, -36171.0 , -3652.7 , -36155.5 , -36156.3 , -36178.9 , $-38-26155.0$	$-36\ 159.5\ \pm\ 2.1$		
1-nonyne	$-46\ 956.3, -46\ 971.0, -46\ 960.4, -46\ 967.2, -46\ 959.3, -46\$	$-46\ 962.3\pm 1.7$		
trimethyla trimethyla ethyl trim	IS 3.4, -46 5 0.7 27 655.8, -27 654.7, -27 645.0, -27 651.3 4, -30 680.8, -30 681.4, -30 675.2, -30 677.0 6, -32 176.0, -32 180.9, -32 169.5, -32 179.4, -32 175.4	$\begin{array}{c} -27 \ 650.7 \pm 1.7 \\ -30 \ 678.7 \pm 1.1 \\ -32 \ 177.9 \pm 1.7 \end{array}$		

^a The uncertainties shown are one standard deviation of the mean. ^b All the energy of combustion measurements made for each compound are listed in this table.

Experimental Method Info:

Rotating Combustion Bomb Calorimetry

NOTE: The **bibliographic information**, **compound identities**, **sample descriptions**, and **mixture** were entered previously. (There are separate tutorials, which describe capture of this information, if needed.)

1. SELECT the **Reaction Class:** *Combustion with oxygen*, here.

Reaction

Help

=

2. SELECT the **Sample #**: *1*, here.

NOTE: The sample number will nearly always be "1", unless samples of various purities or sources were studied.

Reaction class: Combustion with oxygen	Auto-complete Reaction	Balance Check Reaction Stoichiometry
Participant 1 methyl methacrylate	Coefficient	Sample # 1
Participant 2	Coefficient	Jampie #
Participant 3 2 CLICK Auto	Coevicient	Sample #
Participant 4 J. CLICK AULO-	Coefficient	Sample #
Participant 5 complete Reaction	Coefficient	Sample #
Participant 6	Coefficient	Sample #
Participant 7	Coefficient	Sample #
Participant 8	Coefficient	Sample #
Solvent: Inert component:		•
		Accept Cancel

The other reaction **Participants** and the stoichiometry **Coefficients** are added automatically based upon the **Reaction class** and the elements of the compound combusted.

Reaction				
C5H8O2	+ 6 O2 = 5 CO2 + 4 H2O			
Reaction class	Combustion with oxygen	Auto-complete Reaction	Balance Reaction	Check Stoichiometry
Participant 1	methyl methacrylate	Coefficient .1	Sample #	1 💌
Participant 2	oxygen	Coefficient -6	Sample #	
Participant 3	carbon dioxide	Coefficient 5	Sample #	
Participant 4	water	Coefficient 4	Sample #	_
Hancipanco		Coemcient	Sample #	_
Participant 6		Coefficient	Sample #	•
Participant 7		Coefficient	Sample #	•
Participant 8		Coefficient	Sample #	•
Solvent:	✓ Inert component:			•
			Accept	Cancel
CLICK Accept				

Propert1. SELECTHelpprovided. NProperty grotshould include	Method of Measurement from the list OTE: <i>Other</i> can be a valid selection and de a brief description in the Comment field.
Units: J/g	
Method of measurement: Rotating bor	nb calorimetry
Experimental purpose: Principal obj	ective of the work
2. SELECT the Purpose from	Experimental the list provided.
	3. CLICK OK OK Cancel

Internal energy of reaction (mass basis) C5H802 + 6 02 = 5 C02 + 4 H20		1. SELF	ECT the			
methyl methacrylate	Phase Liquid	Phase	e for each			
- Participant 2	Phase Gao	Partic	ipant from			
- Participant 3		the men	nus			
water	Phase Liquid	nrovido	d			
- Participant 4	Phase Gas		: u.			
2. ENTER the temperature and pressure for the experimental value in these fields.						
Property value -27301.1 J/g Precision:	1.3 Number of determinations: 7					
Comment: Set # 1 Property and Method Standard state:		T	Accept Cancel			
3. ENTER the Propert and the Number of d	y value, the Predeterminations	cision,	4. CLICK Accept			

Continue with other compounds, samples, properties, reactions, etc...

or save your file and exit the program.