METADATA AND NUMERICAL DATA CAPTURE: Speed of Sound (2 - Components)

Guided Data Capture (GDC)

This tutorial describes

METADATA AND NUMERICAL DATA CAPTURE:

for 2-components Speed of Sound

with the Guided Data Capture (GDC) software.

NOTE:

The tutorials proceed sequentially to ease the descriptions. It is not necessary to enter *all* compounds before entering *all* samples, etc.

Compounds, samples, properties, etc., can be added or modified at any time.

However, the hierarchy must be maintained (i.e., a property cannot be entered, if there is no associated sample or compound.)

The experimental data used in this example is from:

J. Chem. Eng. Data 2001, 46, 312-316

Temperature Dependence of Densities and Speeds of Sound of Nitromethane + Butanol Isomers in the Range (288.15-308.15) K

Jacobo Troncoso, Clara A. Tovar, Claudio A. Cerdeiriña, Enrique Carballo, and Luís Romaní*

Departamento de Física Aplicada, Universidad de Vigo, Facultad de Ciencias del Campus de Ourense, 32004 Ourense, Spain

Densities and speeds of sound of the systems nitromethane + 1-butanol, nitromethane + 2-methyl-propan-1-ol, and nitromethane + 2-butanol were measured in the temperature range (288.15-308.15) K. Excess molar volumes are discussed and compared with those of other systems polar fluid + alcohol founded in the literature.

312

Speeds of Sound for the binary system **2,2,2-trifluoroethanol + quinoline**at *p* = 101.3 kPa and various temperatures

Table 3. Selected Data of Densities ρ and Speeds of Sound u for the Studied Mixtures											
	$ ho/g \cdot cm^{-3}$						<i>u</i> /m•s⁻¹				
х	288.15 K	293.15 K	298.15 K	303.15 K	308.15 K	288.15 K	293.15 K	298.15 K	303.15 K	308.15 K	
x Nitromethane $+ (1 - x)$ 1-Butanol											
0.056 70		0.82000	0.816 09	0.812 08	0.808 05	*	1255.86	1238.64	1221.53	1205.03	
0.103 78		0.82925	0.825 17	0.821 04	0.81688		1255.12	1238.01	1220.76	1203.96	
0.197 35		0.84872	0.84444	0.84002	0.83566		1254.38	1236.86	1218.87	1202.62	
0.290 57		0.87012	0.865 62	0.86099	$0.856\ 34$		1253.87	1236.36	1219.03	1201.74	
0.346 86		0.88404	0.87943	0.87478	0.870 13		1254.30	1237.41	1218.59	1202.14	
0.425 91		0.90500	0.900 05	0.89504	$0.890\ 00$		1253.82	1236.96	1219.93	1203.02	
0.482 52		0.92115	0.916 01	0.910 81	0.905 62		1254.03	1237.24	1221.17	1204.63	
0.524 56		0.93390	0.928 61	0.923 30	0.91798		1255.68	1238.16	1222.92	1206.35	
0.559 49		0.94502	0.93963	0.934 24	0.928 78		1256.76	1240.56	1224.36	1208.18	
0.587 64		0.95421	0.94873	0.943 20	0.937 71		1257.09	1241.01	1225.21	1209.97	
0.689 09		0.98996	0.98427	0.978 52	0.972 77		1267.10	1251.14	1235.51	1219.22	
0.750 78		1.01394	1.008 07	1.002 18	0.996 29		1277.35	1260.39	1244.39	1227.41	
0.852 46		1.05815	1.051 89	1.045 59	1.037 26		1300.15	1282.17	1264.12	1246.13	
0.946 35		1.10580	1.09935	1.092 86	1.086 02		1326.53	1307.10	1287.76	1268.97	

This data set is considered here.

Experimental Method Info:

Densities ρ and speeds of sound u of the pure components and of the binary mixtures were measured using a DSA-48 densimeter and sound analyzer. This apparatus, con-

The temperature

was controlled through a solid-state thermostat that uses the Peltier effect, and the precision in the temperature was ± 0.005 K. The precision is estimated to be about $\pm 2 \times 10^{-5}$ for mole fraction x, $\pm 1 \times 10^{-5}$ g·cm⁻³ for ρ , and ± 0.02 m·s⁻¹ for u.

NOTE: The bibliographic information, compound identities, sample descriptions, and mixture were entered previously. (There are separate tutorials, which describe capture of this information, if needed.)

SELECTION of # of Phases in Equilibrium and # of Constraints

Specification of constraints, constraint values, and constraint units

1. SELECT the **Constraint(s)** (p here) and the **Independent Variable(s)** (T and x_1 , here) from the lists provided.

Measurement definition and Data presentation

Table 3. Selected Data & Defisites p and Speeds of Sound 2 for the Studied Mixtures											
			$ ho/{ m g\cdot cm^{-3}}$					$u/\mathrm{m}\cdot\mathrm{s}^{-1}$			
х	288.15 K	293.15 K	298.15 K	303.15 K	308.15 K	288.15 K	293.15 K	298.15 K	303.15 K	308.15 K	
	x Nitromethane + $(1 - x)$ 1-Buta										
0.056 70		0.82000	0.816	0.81208	0.80805		1255.86	1238.64	1221.53	1205.03	
0.103 78		0.82925	0.825 17	0.821 04	0.81688		1255.12	1238.01	1220.76	1203.96	
0.197 35		0.84872	0.84444	0.8-2.02	0.835 66		1254.38	1236.86	1218.87	1202.62	
0.290 57		0.87012	0.865 62	0.860 99	0.856 34		1253.87	1236.36	1219.03	1201.74	
0.346 86		0.88404	0.87943	0.87478	0.870		1254.30	1237.41	1218.59	1202.14	
0.425 91		0.90500	0.900 05	0.89504	0.89000		1253.82	1236.96	1219.93	1203.02	
0.482 52		0.92115	0.916 01	0.91081	0.905 62		1254.03	1237.24	1221.17	1204.63	
0.524 56		0.93390	0.92861	0.923 30	0.91798		1255.68	1238.16	1222.92	1206.35	
0.559 49		0.94502	0.93963	0.934 24	0.92878		1256.76	1240.56	1224.36	1208.18	
0.587 64		0.95421	0.94873	0.943 20	0.93771		1257.09	1241.01	1225.21	1209.97	
0.689 09		0.98996	0.98427	0.978 52	0.97277		1267.10	1251.14	1235.51	1219.22	
0.750 78		1.01394	1.008 07	1.002 18	0.996 29		1277.35	1260.39	1244.39	1227.41	
0.852 46		1.05815	1.051 89	1.045 59	1.039 26		1300.15	1282.17	1264.12	1246.13	
0.946 35		1.10580	1.09935	1.092 86	1.086 02		1326.53	1307.10	1287.76	1268.97	

NOTE: Simple CUT/PASTE procedures can be used within the table to convert the original table into the required number of columns. (This can also be done externally in spreadsheet software, e.g., EXCEL.)

END

Continue with other compounds, samples, properties, reactions, etc...

or save your file and exit the program.