# METADATA AND NUMERICAL DATA CAPTURE: INTERFACIAL TENSION 2 – Components at constant pressure





This tutorial describes METADATA AND NUMERICAL DATA CAPTURE: for 2-components at constant pressure INTERFACIAL TENSION (N·m<sup>-1</sup>) with the Guided Data Capture (GDC) software.

# NOTE:

The tutorials proceed sequentially to ease the descriptions. It is not necessary to enter *all* compounds before entering *all* samples, etc.

Compounds, samples, properties, etc., can be added or modified at any time.

However, the hierarchy must be maintained (i.e., a property cannot be entered, if there is no associated sample or compound.)

### The experimental data used in this example is from:

1086

J. Chem. Eng. Data 2001, 46, 1086-1088

#### Interfacial Tension of Alkane + Water Systems<sup>†</sup>

#### Susana Zeppieri, Jhosgre Rodríguez, and A. L. López de Ramos\*

Universidad Simón Bolívar, Departamento de Termodinámica y Fenómenos de Transferencia, Grupo de Fenómenos de Transporte (G-10), Apartado Postal 89.000, Caracas 1080-A, Venezuela

Interfacial tension was measured for hexane + water, heptane + water, octane + water, nonane + water, decane + water, undecane + water, and dodecane + water, using the emergent drop experimental technique with a numerical method based on a fourth degree spline interpolation of the drop profile. The experimental equipment used to generate the drop consists of a cell with a stainless steel body and two Pyrex windows. The inner cell was previously filled with water. A surgical needle (at the bottom of the cell) was used to introduce the organic phase into the cell (forming the emergent drop). Water was used to keep the temperature constant inside the cell (between 10 °C and 60 °C). The cell was illuminated from the back using a fiber optic lamp and a diffuser. A video camera (with a 60 mm microlens and an extension ring) was located at the front window. The emergent drop image was captured and sent to the video recording system. The cell and the optical components were placed on an optical table with vibration isolation legs. A new correlation was found to predict interfacial tension ( $\gamma$ ) as a function of temperature (t) and the number of carbon atoms (n) with a deviation of less than 0.05% from experimental values.

### INTERFACIAL TENSION = f(T) with p = 101.3 kPa (2 ñ Components) Hexane + Water

|   | Table 1. Interfacial Tension Experimental Values at Different Temperatures |                |                 |                |                |                              |  |  |  |  |
|---|----------------------------------------------------------------------------|----------------|-----------------|----------------|----------------|------------------------------|--|--|--|--|
|   | interfacial tension, $\gamma/mN\cdot m^{-1} \pm 0.04$                      |                |                 |                |                |                              |  |  |  |  |
|   | $(t \pm 0.1)/^{\circ}C$                                                    | hexane + water | heptane + water | octane + water | nonane + water | ${\rm decane} + {\rm water}$ |  |  |  |  |
|   | 10.0                                                                       | 51.43          |                 | 52.27          | 52.69          | 52.97                        |  |  |  |  |
|   | 15.0                                                                       | 51.11          | 51.59           | 52.01          | 52.37          | 52.67                        |  |  |  |  |
|   | 20.0                                                                       | 50.80          | 51.24           | 51.64          | 52.06          | 52.33                        |  |  |  |  |
|   | 25.0                                                                       | 50.38          | 50.71           | 51.16          | 51.63          | 51.98                        |  |  |  |  |
|   | 27.5                                                                       | 50.11          | 50.47           | 51.00          | 51.48          | 51.77                        |  |  |  |  |
|   | 30.0                                                                       | 49.96          | 50.30           | 50.74          | 51.21          | 51.51                        |  |  |  |  |
|   | 32.5                                                                       | 49.70          | 57.12           | 50.48          | 50.95          | 51.26                        |  |  |  |  |
|   | 35.0                                                                       | 49.44          | 49.39           | 50.22          | 50.68          | 51.06                        |  |  |  |  |
|   | 37.5                                                                       | 49.18          | 49.64           | 50.09          | 50.54          | 50.83                        |  |  |  |  |
|   | 40.0                                                                       | 48.92          | 49.38           | 49.84          | 50.27          | 50.53                        |  |  |  |  |
|   | 45.0                                                                       | 48.52          | 49.00           | 49.45          | 49.87          | 50.13                        |  |  |  |  |
|   | 50.0                                                                       | 48.13          | 48.55           | 48.95          | 49.36          | 49.78                        |  |  |  |  |
| Ľ | 55.0                                                                       |                |                 | 48.58          | 49.09          | 49.45                        |  |  |  |  |
|   | 60.0                                                                       |                |                 | 48.32          | 48.82          | 49.21                        |  |  |  |  |
| L |                                                                            |                | These dat       | a are          |                |                              |  |  |  |  |
|   |                                                                            |                | considere       | d here.        |                |                              |  |  |  |  |

# **Experimental Method Info:**

**Emerging Drop Analysis** 

Uncertainty in interfacial tension = 0.04 mN·m<sup>-1</sup>

Uncertainty in temperature = 0.1 K



**NOTE:** The **bibliographic information**, **compound identities**, **sample descriptions**, and **mixture** were entered previously. (There are separate tutorials, which describe capture of this information, if needed.)

| Property and experimental method for hexan<br>Help                                  | e + water                                           |
|-------------------------------------------------------------------------------------|-----------------------------------------------------|
| Property group: Refraction; Surface tension; and Speed                              | i of sound                                          |
| Property: Interfacial tension                                                       |                                                     |
| Units: ALL OTHER UNITS<br>N/m<br>ALL OTHER UNITS                                    | I. SELECT the Property Group:                       |
| Method of measurement:                                                              | Refraction; Surface tension; and<br>Speed of sound. |
| Experimental purpose:<br><b>2. SELECT the</b><br><i>Interfacial tensio</i>          |                                                     |
| 3. SELECT the <b>Units</b> : So <i>OTHER UNITS</i> for this e                       |                                                     |
| <b>Com</b><br><b>in the manuscript table a</b><br><b>multiplier is entered on t</b> | re mN·m <sup>-1</sup> . A                           |
|                                                                                     |                                                     |
|                                                                                     | OK Cancel                                           |

# **1. TYPE the required conversion** factor (0.001 for the example).



| 💐 Property and an anima to be a few barren a material few barren and the barren |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| <b>1. SELECT Method of Measurement</b> from the li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | st        |
| Property group provided. <b>NOTE:</b> <i>Other</i> can be a valid selection and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ald       |
| <b>Property:</b> should include a brief description in the <b>Comment</b> fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eia.      |
| Units: ALL OTHER UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>_</b>  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| Method of measurement: Other experimental method (please, describe in "Comments")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| Experimental purpose: Principal objective of the work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b></b> _ |
| Experimental purpose: Principal objective of the work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| 2. SELECT the <b>Experimental</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| <b>Purpose</b> from the list provided.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| Turpede irom the list provided.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,         |
| Comment Emerging Drop analysis <b>3. CLICK </b> <i>OK</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| Contional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| OK Cance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |

## **SELECTION of # of Phases in Equilibrium and # of Constraints**





| 🛢, Interfacial t  | ension (* 0.001     | N/m) as function of 1 v | ariable(s)               |                |                |                                                              | _ 🗆 × |
|-------------------|---------------------|-------------------------|--------------------------|----------------|----------------|--------------------------------------------------------------|-------|
| Mixture: hexane   | + water             |                         |                          |                |                |                                                              | •     |
| Phases in equilit |                     | Constraints: 1          | Independent variables: 1 | Property set # | · _            | ole # 1                                                      |       |
| Phase of the P    | Property Value(s)   |                         |                          |                | ▼              | value(s)     value(s)     value(s)     value(s)     value(s) | 0 %   |
|                   |                     |                         |                          |                |                |                                                              |       |
|                   |                     |                         | o <i>les</i> for a giv   |                |                |                                                              |       |
|                   | be ac               | commoa                  | ated, but thi            | is is rarely   | neeaea.        |                                                              |       |
| Definition of Mea | asurement Results   | (Absolute vs Relative)  |                          | •              |                |                                                              |       |
| Data presentatio  |                     |                         |                          |                |                |                                                              |       |
| Comments (Op      | ptional): [Emerging | ) Drop analysis         |                          |                |                |                                                              |       |
|                   |                     | [                       | Property and method      |                | Numerical Data | Cancel                                                       |       |



# 1. SELECT the **Phase 2** (*Liquid mixture 2*), **Constraint(s)**, and **Independent variable(s)** from the menus.

| Interfacial tension (* 0.001 N/m) as function of 1 | variable(s)              |                  |                   |                          | _ 🗆 X |
|----------------------------------------------------|--------------------------|------------------|-------------------|--------------------------|-------|
| Mixture: hexane + water                            |                          |                  |                   |                          | •     |
| Phases in equilibrium: 2 🔽 Constraints: 1 💌        | Independent variables: 1 | Property set # 1 | Sample # 1 Sample | of the Property Value(s) |       |
| Phase of the Property Value(s) Liquid mixture 1    |                          |                  | 0.04              | • * 0.001 N/m            | 0%    |
| Phase 2                                            |                          |                  |                   |                          |       |
| Liquid mixture 2                                   |                          |                  |                   |                          |       |
| Constraint 1 (Fixed value of)<br>Pressure          | Squid mixture 1          | Value: 101.3     | Units: kPa        | Uncertainty:             |       |
| -Independent variable 1                            |                          | →                |                   |                          |       |
| Temperature                                        | I uf Liquid mixtu ≥ 1    |                  | Units: C          | Uncertainty: 0.01        |       |
|                                                    |                          |                  |                   |                          |       |
| <b>2. SELECT Unit</b>                              | <b>5</b> for the varia   | able(s) and      | d                 |                          |       |
| <b>constraint(s).</b> Incl                         | ude approxim             | ate              |                   |                          |       |
| <b>Uncertainties</b> ,                             |                          |                  |                   |                          |       |
| Uncertainties,                                     | II KIIUWII.              |                  |                   |                          |       |
| Comments (Optional):                               |                          |                  |                   |                          |       |
| Comments (Optional): Emerging Drop analysis        |                          |                  |                   |                          |       |
|                                                    | Property and method      |                  | Numerical Data    | Cancel                   |       |
|                                                    |                          |                  |                   |                          |       |

| 🐂 Interfacial tension (* 0.001 N/m) as function of 1 vari                 | iable(s)                 |                                | _ 🗆 🗙             |
|---------------------------------------------------------------------------|--------------------------|--------------------------------|-------------------|
| Mixture: hexane + water                                                   |                          |                                | <b></b>           |
| Phases in equilibrium: 2 💌 Constraints: 1 💌                               | Independent varia 1. SEL | ECT <i>Direct Value</i> (as    | 3)                |
| Phase of the Property Value(s) Liquid mixture 1 Phase 2                   | compa                    | red with <i>Relative Value</i> | 2) 01 N/m 0 %     |
| Liquid mixture 2                                                          | from tl                  | ne list defining the           |                   |
| Constraint 1 (Fixed value of) Pressure                                    |                          | urement Results                | inty: 🔽 🗖 🎖       |
| Independent variable 1                                                    | of Liquid mixture 1      | Units: C                       | Uncertainty: 0.01 |
|                                                                           |                          |                                |                   |
| Definition of Measurement Results (Absolute vs Relative)     Direct value | <b></b>                  | <b>2. SELECT the appro</b>     | priate            |
|                                                                           |                          | <b>Data presentatio</b>        | n 📋               |
| - Data presentation<br>Experimental values                                |                          | method. Experimental           | values            |
|                                                                           |                          | here.                          |                   |
| Comments (Optional): Emerging Drop analysis                               |                          |                                |                   |
| Pro                                                                       | operty and method        | Numerical Data Cancel          |                   |
| 3.                                                                        | CLICK Num                | erical Data                    |                   |

| Interfacial tension (* 0.001 N         File       Edit       Action       Action         Var 1       Property |                                                                                                                                                     | of 1 variable(s)                                                                                         | PAS<br>prop                                                                                     | TE the v                                                                                                                   | ich prefe<br>ariable a<br>ues into t<br><b>bage</b>                                                                        | nd                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                                                                                                               |                                                                                                                                                     | nerfacial Tensio<br>hexane + water                                                                       | -                                                                                               | interfac                                                                                                                   | ial tension, γ/mN                                                                                                          | $m^{-1} \pm 0.04$                                                                                                          |
|                                                                                                               | $\begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 25.0 \\ 27.5 \\ 30.0 \\ 32.5 \\ 35.0 \\ 37.5 \\ 40.0 \\ 45.0 \\ 50.0 \\ 50.0 \\ 50.0 \\ 60.0 \end{array}$ | 51.43<br>51.11<br>50.80<br>50.38<br>50.11<br>49.96<br>49.70<br>49.44<br>49.18<br>48.92<br>48.52<br>48.13 | 51.59<br>51.24<br>50.71<br>50.47<br>50.30<br>50.12<br>49.89<br>49.64<br>49.38<br>49.00<br>48.55 | 52.27<br>52.01<br>51.64<br>51.16<br>51.00<br>50.74<br>50.48<br>50.22<br>50.09<br>49.84<br>49.45<br>48.95<br>48.58<br>48.32 | 52.69<br>52.37<br>52.06<br>51.63<br>51.48<br>51.21<br>50.95<br>50.68<br>50.54<br>50.27<br>49.87<br>49.36<br>49.09<br>48.82 | 52.97<br>52.67<br>52.33<br>51.98<br>51.77<br>51.51<br>51.26<br>51.06<br>50.83<br>50.53<br>50.13<br>49.78<br>49.45<br>49.21 |

|   | Var 1 F<br>10.0 | Property 51.43 | _                       |                    |                      |                  |                   |                   |
|---|-----------------|----------------|-------------------------|--------------------|----------------------|------------------|-------------------|-------------------|
|   | 15.0            | 51.43          |                         |                    |                      |                  |                   |                   |
|   | 20.0            | 50.80          |                         |                    |                      |                  |                   |                   |
|   | 25.0            | 50.38          |                         |                    |                      |                  |                   |                   |
|   | 23.0            | 50.11          |                         |                    |                      |                  |                   |                   |
|   | 30.0            | 49.96          |                         |                    |                      |                  |                   |                   |
|   | 32.5            | 49.70          |                         |                    |                      |                  |                   |                   |
|   | 35.0            | 49.44          |                         |                    |                      |                  |                   |                   |
|   | 37.5            | 49.18          |                         |                    |                      |                  |                   |                   |
| ) | 40.0            | 48.92          |                         |                    |                      |                  |                   |                   |
|   | 45.0            | 48.52          | T-11-1                  | Constant Transform |                      | 1 W-Loss of Die  | C                 | 4                 |
| 2 | 50.0            | 48.13          | Table 1.                | tacial Tensie      | on Experimenta       | n values at Diff | terent Tempera    | tures             |
|   |                 |                |                         |                    |                      | interfac         | ial tension, γ/mN | $m^{-1} \pm 0.04$ |
|   |                 |                | $(t \pm 0.1)/^{\circ}C$ | hexane + water     | neptane + water      | octane + water   | nonane + water    | decane + wat      |
|   |                 |                | 10.0                    | 51.43              |                      | 52.27            | 52.69             | 52.97             |
|   |                 |                | 15.0                    | 51.11              | 51.59                | 52.01            | 52.37             | 52.67             |
|   |                 |                | 20.0                    | 50.80              | 51.24                | 51.64            | 52.06             | 52.33             |
|   |                 |                | 25.0                    | 50.38              | 50.71                | 51.16            | 51.63             | 51.98             |
|   |                 |                | 27.5                    | 50.11              | 50.47                | 51.00            | 51.48             | 51.77             |
|   |                 |                | 30.0                    | 49.96              | 50.30                | 50.74            | 51.21             | 51.51             |
|   |                 |                | 32.5                    | 49.70              | 50.12                | 50.48            | 50.95             | 51.26             |
|   |                 |                | 35.0                    | 49.44              | 49.89                | 50.22            | 50.68             | 51.06             |
|   |                 |                | 37.5                    | 49.18              | 49.64                | 50.09            | 50.54             | 50.83             |
|   |                 |                | 40.0                    | 48.92              | 49.38                | 49.84            | 50.27             | 50.53             |
|   |                 |                | 45.0                    | 48.52              | 49.00                | 49.45            | 49.87             | 50.13             |
|   |                 |                | 45.0                    | 40.34              | de text in text text |                  |                   |                   |
|   |                 |                | 45.0                    | 48.13              | 48.55                | 48.95            | 49.36             | 49.78             |
|   |                 |                |                         |                    |                      | 48.95<br>48.58   | 49.36<br>49.09    | $49.78 \\ 49.45$  |

**NOTE:** Simple CUT/PASTE procedures can be used within the table to convert the original table into the required number of columns. (This can also be done externally in spreadsheet software, e.g., EXCEL.)



#### Interfacial tension (\* 0.001 N/m) as function of 1 variable(s) File Edit Action Units

| <u>File E</u> dit <u>A</u> o | ction <u>H</u> elp |          |                 |   |            |        |        |
|------------------------------|--------------------|----------|-----------------|---|------------|--------|--------|
|                              | Var 1              | Property |                 |   |            |        |        |
| 1                            | 10.0               |          |                 |   |            |        |        |
| 2 3                          | 15.0               | 51.11    |                 |   |            |        |        |
| 3                            | 20.0               |          |                 |   |            |        |        |
| 4                            | 25.0               |          |                 |   |            |        |        |
| 5                            | 27.5               |          |                 |   |            |        |        |
| 6                            | 30.0               |          |                 |   |            |        |        |
| 7                            | 32.5               |          |                 |   |            |        |        |
| 8                            | 35.0               |          |                 | - |            |        |        |
| 9                            | 37.5               |          |                 |   |            |        |        |
| 10                           | 40.0               |          |                 |   | CLICK Acce | nt     |        |
| 11                           | 45.0               |          |                 |   |            |        |        |
| 12                           | 50.0               | 48.13    |                 | - |            |        |        |
|                              |                    |          |                 |   |            |        |        |
|                              |                    |          | Clear the Table |   | View plot  | Accept | Cancel |

- D ×





**Continue with other compounds, samples, properties, reactions, etc...** 

*or* save your file and exit the program, if all properties have been captured.