
METADATA AND NUMERICAL DATA CAPTURE: Vapor-Liquid Equilibria: PTx (DEW POINT PRESSURES)

Guided Data Capture (GDC)

This tutorial describes METADATA AND NUMERICAL DATA CAPTURE: for Vapor-Liquid Equilibria (2 components): *PTx* data (<u>Dew Point</u> pressures) with the Guided Data Capture (GDC) software.

NOTE:

The tutorials proceed sequentially to ease the descriptions. It is not necessary to enter *all* compounds before entering *all* samples, etc.

Compounds, samples, properties, etc., can be added or modified at any time.

However, the *hierarchy must be maintained* (i.e., a property cannot be entered, if there is no associated sample or compound.)

The experimental data used in this example is from:

J. Chem. Eng. Data 1997, 42, 64-68

High-Pressure Phase Equilibria in the Binary System (Methane \pm 5- α -Cholestane)

Eckhard Flöter, Christof Brumm, Theodoor W. de Loos,* and Jakob de Swaan Arons

Delft University of Technology, Faculty of Chemical Engineering and Materials Science, Laboratory of Applied Thermodynamics and Phase Equilibria, Julianalaan 136, 2628 BL Delft, The Netherlands

In this paper, experimental data on the phase behavior of the binary system (methane ± 5 - α -cholestane) are presented. Experiments were carried out according to the synthetic method. The temperature range investigated was from 320 K to 450 K. The pressures applied did not exceed 250 MPa. Vapor-liquid equilibria have been measured for 18 different mixtures. Additionally, the melting curve of pure 5- α -cholestane and the course of the three-phase curve (solid 5- α -cholestane + liquid + vapor) was determined. The second critical end point was located at a temperature $T = (342.2 \pm 0.5)$ K, a pressure $p = (193.3 \pm 0.4)$ MPa, and a mole fraction of 5- α -cholestane in the critical fluid phase $x = 0.049 \pm 0.004$.

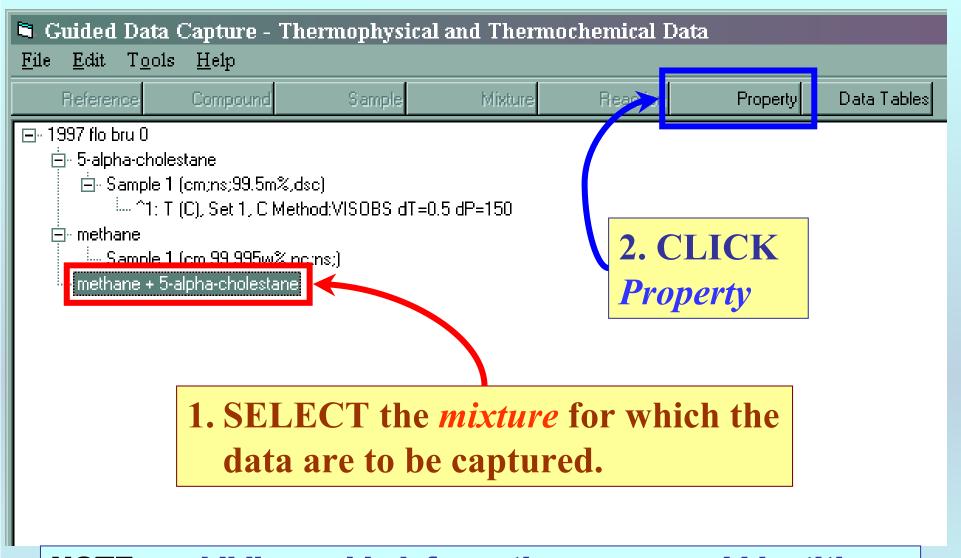
64

PTx dew-point data for **methane + 5-**α**-cholestane**

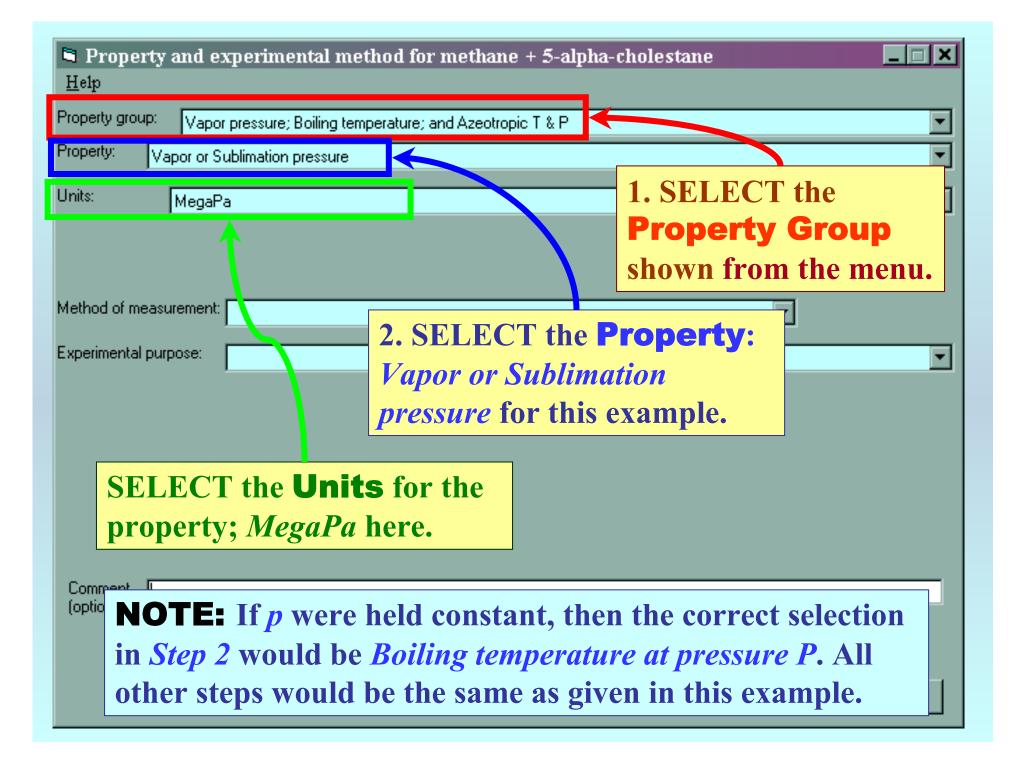
Table 2.	Vapor-Liquid	l Equilibriun	n Data for (M	lethane (A) +	- 5-α-Cholest	tane (B)) ^a			
T/K	<i>p</i> /MPa	<i>T</i> /K	p/MPa	<i>T</i> /K	p/MPa	7/K	<i>p</i> /MPa	<i>T</i> /K	p/MPa
				$x_{\rm B} = 0.0$	05 (d.p.)				
330.45	139.28	360.72	136.28	400.67	97.06	433.82	84.85		
341.47	130.08	376.40	108.26	408.78	93.86	445.35	81.05		
353.34	121.47	385.47	103.86	420.63	89.45	458.23	77.05		
				$x_{\rm R} = 0.0$	10 (d.p.)				
335.72	168.70	368.13	139.28	404.15	117.47	439.28	101.86	470.74	90.45
346.67		379.11	131.68	415.52	111.87	451.70	97.06		
358.12	147.09	391.13	124.47	427.14	106.66	463.02	93.05		
				$x_{\rm R} = 0.0$	21 (d.p.)				
325.47	207.52	354.12	171.90	383.38	147.09	417.53	126.67	451.78	111.27
335.80	192.71	361.43	164.70	395.00	139.28	429.25	120.87	462.67	107.06
347.17	179.51	373.17	154.69	406.15	132.68	441.19	115.67		
				$x_{\rm p} = 0.0$	30 (d.p.)				
325.53	214.53	359.25	172.90	385.11	151.49	418.30	131.28	453.25	115.47
336.47	198.92	370.69	162.70	396.28	143.88	431.15	124.87	464.31	111.07
348.31	184.31	377.38	157.09	407.35	136.68	441.51	120.27		
				$x_{\rm R} = 0.0$	41 (d.p.)				
325.45	215.33	358.17	174.70	395.29	145.89	429.49	127.27	462.89	113.07
336.29		370.57	163.90	407.42	138.28	440.57	122.07		
347.35	186.71	381.13	155.49	419.23	132.18	451.60	117.67		
				$x_{\rm P} = 0.0$	46 (d.p.)				
339.41	196.45	393.72	146.95	435.12	124.75				
357.18		432.58	125.95	458.63	115.15				

This data set is considered here.

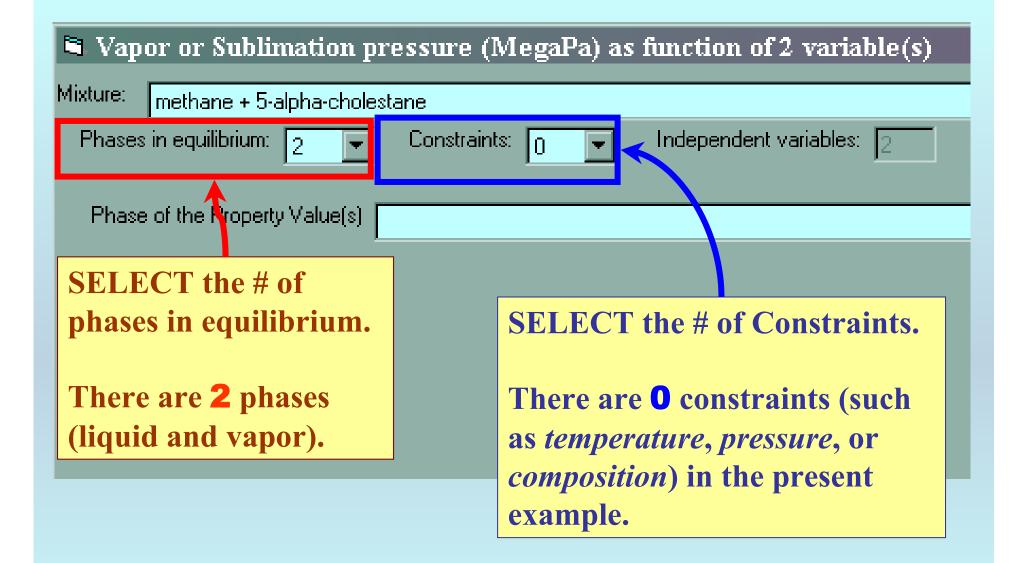
Experimental Method:


The high-pressure experiments were carried out using a sapphire windowed autoclave (de Loos et al., 1980)

Precision/Uncertainty Information:


This allows the determination of transition temperatures with an accuracy better than ± 0.04 K. The pressures are measured and kept constant with dead weight gauges. The uncertainty of the pressure reading was at most ± 0.08 MPa.

Since the measurements on top of the above given hardware accuracies also depend on the visibility of the transition under consideration, the vapor-liquid equilibrium measurements justify an accuracy better than ± 0.15 MPa.


The accuracy of the given compositions is better than ± 0.004 for the mole fraction of cholestane with a tendency to decrease with decreasing cholestane mole fraction.

NOTE: The **bibliographic information**, **compound identities**, **sample descriptions**, and **mixture** were entered previously. (There are separate tutorials related to capture of this information, if needed.)

Prope Help Property gro Property:	1. SELECT Method of Measurement from the provided. NOTE: <i>Other</i> can be a valid selection and should include a brief description in the Commer	d
Units:	MegaPa	•
Method of m	easurement: Closed cell (Static) method	Details
Experimenta	purpose: Principal objective of the work	
2. SEI	LECT the Experimental Purpose	
from	the list provided.	
Comment (optional)	de Loos et al., J. Chem. Thermodyn., 1980, 12, 193-204. 3. CLICK OK OK	Cancel

Vapor or Sublimation pressure (MegaPa) as function of 2 variable(s)	
Mixture: methane + 5-alpha-cholestane	
	Sample # 1
Phase of the Property Value(s)	O MegaPa O %
Multiple <i>samples</i> for a given	component can
be accommodated, but this is	rarely needed.
- Definition of Measurement Results (Absolute vs Relative)	
-Data presentation	
Experimental values	
Comments (Optional): de Loos et al., J. Chem. Thermodyn., 1980, 12, 193-204.	
Property and method	Numerical Data Cancel

Vapor or Sublimation pressure (MegaPa) as function	of 2 variable(s)
Mixture: methane + 5-alpha-cholestane	
Phases in equilibrium: 2 💌 Constraints: 0 💌 Independe	ent variables: 2 Property set # 1 Sample # 1 💌 Sample # 1
	Precision of the Property Value(s)
Phase of the Property Value(s) Gas	MegaPa O %
Phase 2	
-Independent variable 1	SELECT <i>Gas</i> from the list provided for
	· · · · · · · · · · · · · · · · · · ·
-Independent variable 2	the Phase of the Property Value.
	NOTE: For bubble points, this phase is
Definition of Measurement Results (Absolute vs Relative)	The full for bubble points, this phase is
	Liquid.
Data presentation Experimental values	1
NOTE: <i>Phase 2, Const.</i>	<i>raint</i> (if needed) and
- Independent Variable fi	eid(s) appear
automatically based on	the Cibbs Phase Rule
automatically Dascu Oli	

Specification of 2nd phase, constraint(s) if needed, and independent variable(s)

	1. SELE	CT the 2	2 nd Phase	• (<i>Liquid</i> h	ere) and the		
					T, here) from		us.
Phases ir	n equilibrium: 2	Constraints: 0	Independent variables: 2	Property set # 1	Sample # 1 Sample #		
Phase c	of the Property Value(s) Ga	38			Precision of	the Property Value(s) • MegaPa	0 %
Phase 2- Liquid							
Independe	ent variable 1						
	tion of 5-alpha-cholestane				Units: Dimensionless	Uncertainty: 0.004	
Independ Temperal	ent variable 2 ture		▼ ⁰¹ Gas		Units: K	Uncertainty: 0.04	
- Definition Direct va	of Measurement Results (A ilue	bsolute vs Relative)					
2.	SELECT	Units	for the Va	riable(s), a	nd include e	stimated	
			f known.				
Comme	ents (Optional): de Loos et	d L Chara Tharradau	1000 10 100 004				
Conine	and (a brighteria). The noos et					1	
			Property and method		Numerical Data (Cancel	

Measurement definition and Data presentation

Vapor or Sublimation pressure (MegaPa) as function of 2	variable(s)		
Mixture: methane + 5-alpha-cholestane Phases in equilibrium: 2 Constraints: 0 Independent va	1. SELECT	Direct Value	e (as
Phase of the Property Value(s) Gas		with Relative	×
Phase 2	-	t defining th	
Liquid		ment Resi	
Mole fraction of 5-alpha-cholestane of Gas			hty: 0.004 🗖 %
Independent variable 2 Temperature of Gas		Units: K	Uncertainty: 0.04 🗖 %
Definition of Measurement Results (Absolute vs Relative)		2. SELECT	the
Direct value		appropriate	Data
Data presentation			ion method;
Experimental values		-	<i>il values</i> here.
	L	Experimenta	
Comments (Optional): de Loos et al., J. Chem. Thermodyn., 1980, 12, 193-204			
Property and metho	d	Numerical Data	Cancel
	Num artical D		
J. CLICK	Numerical D	ita	

			nation pres	ssure (Meg	gaPa) as fu	inction o
<u>F</u> ile	<u>E</u> dit	Action	Herb			
		Var 1	Var 2	Property		
		I				
						l

TYPE, or much preferably, PASTE the variable and property values into the table.

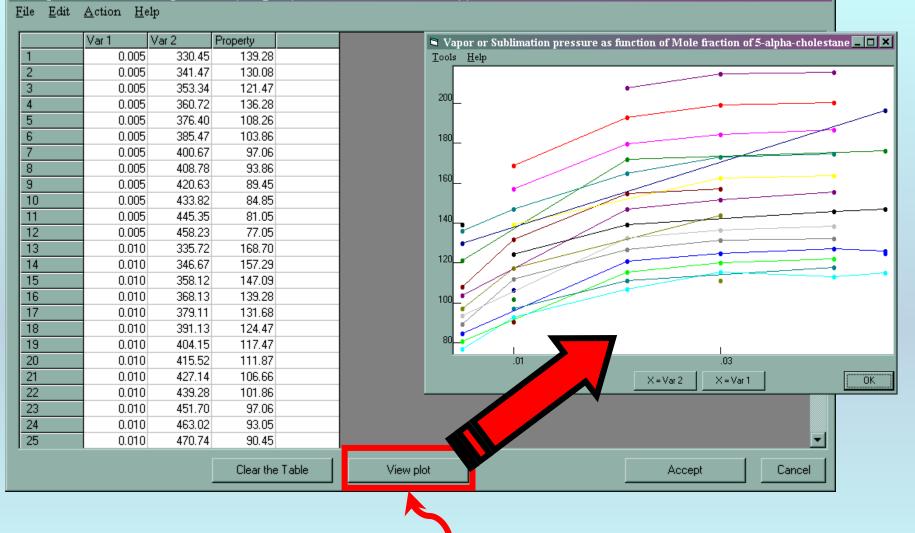
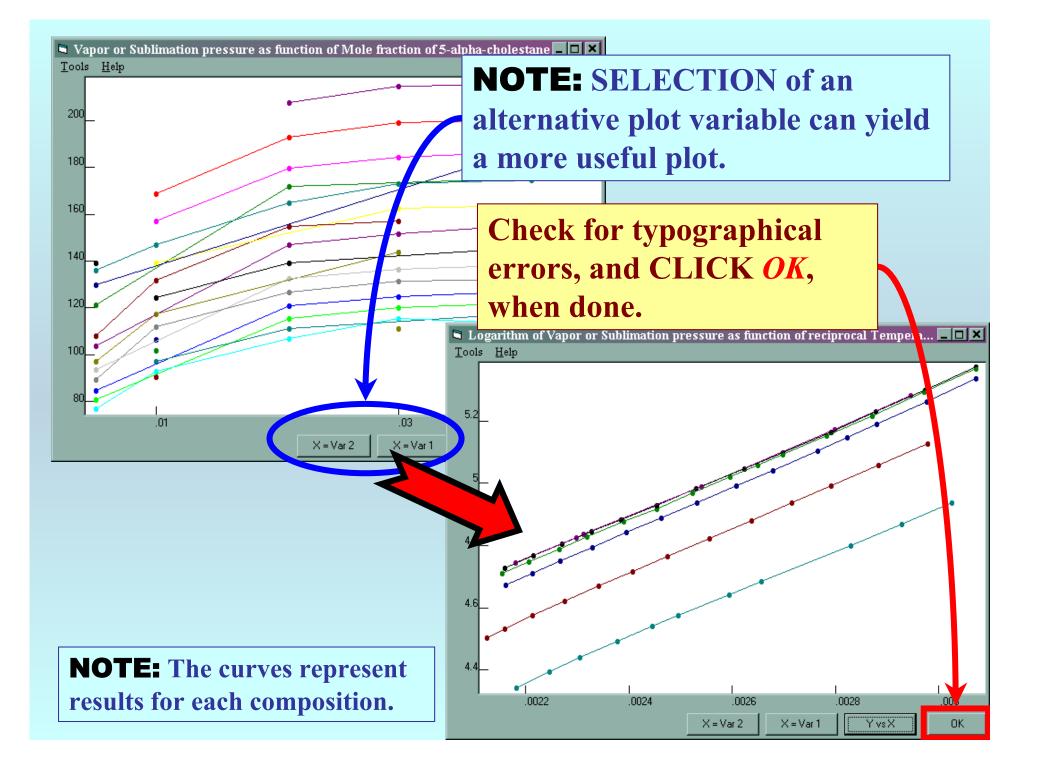
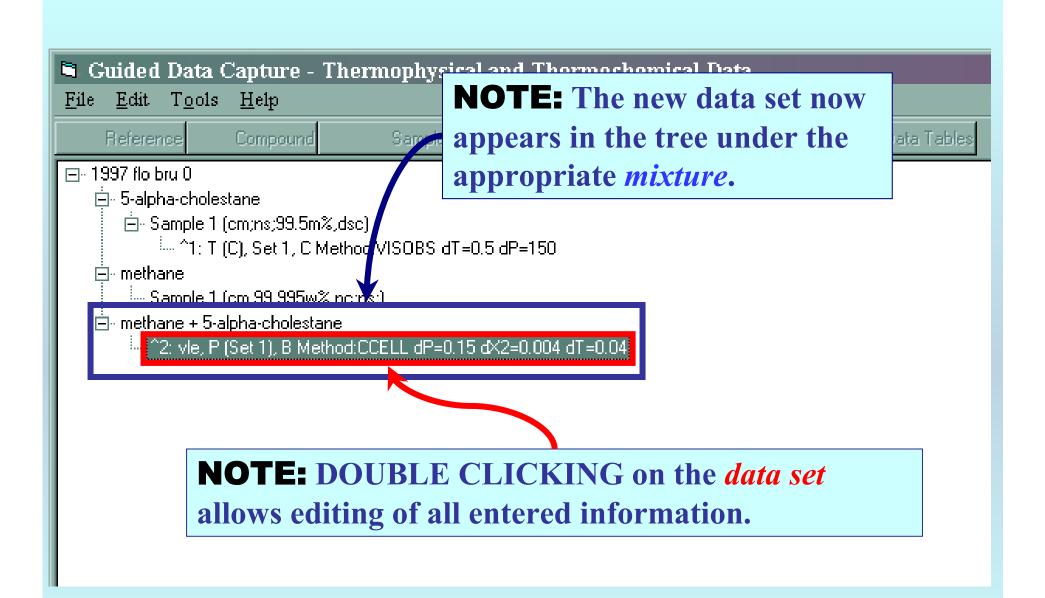

See next page...

Table 2.	Vapor-Liquid	Equilibrium	Data for (M	ethane (A) +	- 5-α-Cholest	ane (B)) ^a			
<i>T</i> /K	<i>p</i> /MPa	<i>T</i> /K	p/MPa	T/K	p/MPa	<i>T</i> /K	p/MPa	<i>T</i> /K	p/MPa
				$x_{\rm B} = 0.0$	05 (d.p.)				
330.45	139.28	360.72	136.28	400.67	97.06	433.82	84.85		
341.47	130.08	376.40	108.26	408.78	93.86	445.35	81.05		
353.34	121.47	385.47	103.86	420.63	89.45	458.23	77.05		
				$x_{\rm B} = 0.0$	10 (d.p.)				
335.72	168.70	368.13	139.28	404.15	117.47	439.28	101.86	470.74	90.45
346.67	157.29	379.11	131.68	415.52	111.87	451.70	97.06		
358.12	147.09	391.13	124.47	427.14	106.66	463.02	93.05		
				$x_{\rm R} = 0.0$	21 (d.p.)				
325.47	207.52	354.12	171.90	383.38	147.09	417.53	126.67	451.78	111.27
335.80	192.71	361.43	164.70	395.00	139.28	429.25	120.87	462.67	107.06
347.17	179.51	373.17	154.69	406.15	132.68	441.19	115.67		
				$x_{\rm p} = 0.0$	30 (d.p.)				
325.53	214.53	359.25	172.90	385.11	151.49	418.30	131.28	453.25	115.47
336.47	198.92	370.69	162.70	396.28	143.88	431.15	124.87	464.31	111.07
348.31	184.31	377.38	157.09	407.35	136.68	441.51	120.27		
				$x_{\rm R} = 0.0$	41 (d.p.)				
325.45	215.33	358.17	174.70	395.29	145.89	429.49	127.27	462.89	113.07
336.29	200.12	370.57	163.90	407.42	138.28	440.57	122.07		
347.35	186.71	381.13	155.49	419.23	132.18	451.60	117.67		
				$x_{\rm R} = 0.0$	46 (d.p.)				
339.41	196.45	393.72	146.95	435.12	124.75				
357.18		432.58	125.95	458.63	115.15				

	Var 1	Var 2	Property										
	0.005	330.45	139.28										
	0.005	341.47	130.08										
	0.005	353.34	121.47										
	0.005	360.72	136.28										
	0.005	376.40	108.26										
	0.005	385.47	103.86										
	0.005	400.67	97.06										
	0.005	408.78	93.86										
	0.005	420.63	89.45										
)	0.005	433.82	84.85	Table 2.	Vapor-Liquid	Equilibriun	n Data for (M	lethane (A) +	5-α-Cholest	ane (B)) ^a			
	0.005	445.35	81.05		p/MPa	<i>T</i> /K	p/MPa	7/K	p/MPa	<i>T</i> /K	<i>p</i> /MPa	7/K	p/M
2	0.005	458.23	77.05	330.45	139.28	360.72	136.28	$x_{\rm B} = 0.00$ 400.67)5 (d.p.) 97.06	433.82	84.85		
 	0.010	335.72	168.70	341.47 353.34		376.40 385.47	108.26 103.86	408.78 420.63	93.86 89.45	445.35 458.23	81.05 77.05		
, 	0.010	346.67	157.29					$x_{\rm B} = 0.01$	0 (d.p.)				
, j	0.010	358.12	147/	335.72	157.29	368.13 379.11	139.28 131.68	404.15 415.52	117.47 111.87	439.28 451.70	101.86 97.06	470.74	90.
, }	0.010	368.13	14	358.12	147.09	391.13	124.47	427.14	106.66	463.02	93.05		
, 7	0.010	379.11	13.	325.47		354.12	171.90	$x_{\rm B} = 0.02$ 383.38	147.09	417.53	126.67	451.78	111.
3	0.010	391.13	124.47	335.80 347.17		361.43 373.17	164.70 154.69	395.00 406.15	139.28 132.68	429.25 441.19	120.87 115.67	462.67	107.
	0.010	404.15	117.47	225.52	214 52	359.25	172.90	$x_{\rm B} = 0.03$ 385.11		418.30	121 29	452.25	115
) 	0.010	404.15	117.47	325.53 336.47	198.92	370.69	162.70	396.28	151.49 143.88	431.15	131.28 124.87	453.25 464.31	$\frac{115.4}{111.0}$
	0.010	415.52	106.66	348.31	184.31	377.38	157.09	407.35 $x_B = 0.04$	136.68 11 (d.p.)	441.51	120.27		
2	0.010	439.28	101.86	325.45 336.29		358.17 370.57	174.70 163.90	395.29 407.42	145.89 138.28	429.49 440.57	127.27 122.07	462.89	113.0
 }	0.010	455.20	97.06	347.35		381.13	155.49	419.23	132.18	451.60	117.67		
, 1	0.010	463.02	93.05	339.41	196.45	393.72	146.95	$x_{\rm B} = 0.04$ 435.12	l6 (d.p.) 124.75				
+ 5	0.010	463.02	90.45	357.18		432.58	125.95	458.63	115.15				


NOTE: Simple CUT/PASTE procedures can be used within the table to convert the original table into the required number of columns. (This can also be done externally in spreadsheet software; e.g., EXCEL.)


CLICK *View plot* to see an automatic graphical representation of the data. *NOT very helpful in this case!* **See next page...**

- **-** ×

You are returned to the previous screen...

V	/ar1	Var 2	Property		
1	0.005	330.45	139.28		
2	0.005	341.47	130.08		
3	0.005	353.34	121.47		
4	0.005	376.40	108.26		
5	0.005	385.47	103.86		
6	0.005	400.67	97.06		
7	0.005	408.78	93.86		
8	0.005	420.63	89.45		
9	0.005	433.82	84.85		
10	0.005	445.35	81.05		
11	0.005	458.23	77.05		
12	0.010	335.72	168.70		
13	0.010	346.67	157.29		
14	0.010	358.12	147.09		
15	0.010	368.13	139.28		
16	0.010	379.11	131.68		
17	0.010	391.13	124.47		
18	0.010	404.15	117.47		
19	0.010	415.52	111.87	CLICK Accept	
20	0.010	427.14	106.66		
21	0.010	439.28	101.86		
22	0.010	451.70	97.06		
23	0.010	463.02	93.05		
24	0.010	470.74	90.45		
25	0.021	325.47	207.52		

Continue with other compounds, samples, properties, reactions, etc...

or save your file and exit the program.