
METADATA AND NUMERICAL DATA CAPTURE: SOLUBILITY (composition) (2 – Components: Liquid & Gas)

This tutorial describes METADATA AND NUMERICAL DATA CAPTURE: for 2-components: Liquid & Gas SOLUBILITIES (composition) with the Guided Data Capture (GDC) software.

NOTE:

The tutorials proceed sequentially to ease the descriptions. It is not necessary to enter *all* compounds before entering *all* samples, etc.

Compounds, samples, properties, etc., can be added or modified at any time.

However, the hierarchy must be maintained (i.e., a property cannot be entered, if there is no associated sample or compound.)

The experimental data used in this example is from:

784

J. Chem. Eng. Data 1999, 44, 784-787

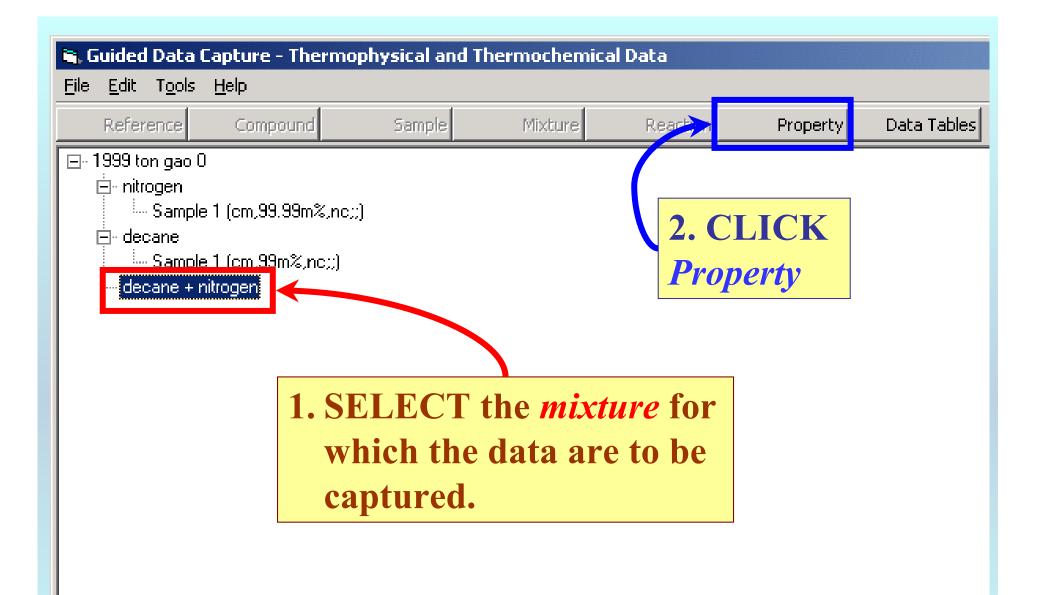
Solubilities of Nitrogen in Heavy Normal Paraffins from 323 to 423 K at Pressures to 18.0 MPa

Jianfen Tong, Wuzi Gao, Robert L. Robinson, Jr.,* and Khaled A. M. Gasem

School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078-0537

The solubilities of nitrogen in selected *n*-paraffin hydrocarbons (decane, eicosane, octacosane, hexatriacontane) were measured using a static equilibrium cell over the temperature range from 323.2 to 423.2 K at pressures to 18.0 MPa. The uncertainty in the measured solubilities is estimated to be less than 0.001 in mole fraction. The data were analyzed using the Soave–Redlich–Kwong (SRK) and Peng– Robinson (PR) equations of state. In general, the two equations represent the experimental data well when a single interaction parameter C_{ij} is used for each binary system. The data display a trend of increasing solubility of nitrogen with increased temperature, pressure, and *n*-paraffin chain length.

SOLUBILITY (composition) (2 ñ Components: Liquid & Gas) **Nitrogen + Decane**

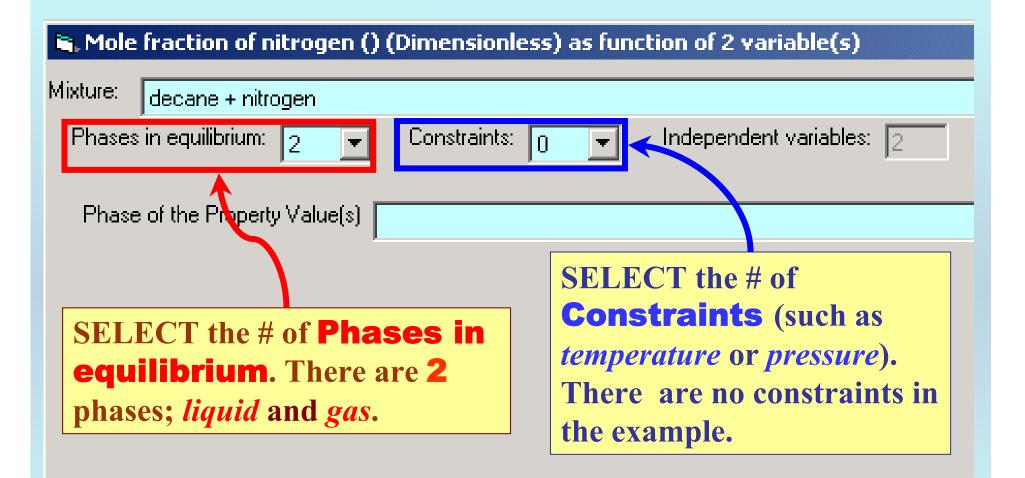

<i>x</i> 1	pMPa	xı	p/MPa
	Dec	ane	
	344.	.3 K	
0.0556	4.33	0.1178	9.84
0.0590	4.61	0.1202	10.06
0.0633	4.97	0.1539	13.40
0.1087	8.99	0.1578	13.81
	377.	.6 K	
0.0568	4.05	0.1662	13.15
0.0689	4.97	0.1708	13.63
0.1158	8.73	0.1967	16.04
0.1271	9.66		
	410	.9 K	
0.0598	3.91	0.1343	9.25
0.0749	4.92	0.1690	11.99
0.1162	7.89	0.1894	13.61

Experimental Method Info:

Experimental Method

A variable-volume, static-type blind equilibrium cell was used in this study. The apparatus and procedures have been described previously (Gao et al., 1999b). The measurement uncertainties are estimated to be 0.1 K in temperature and less than 0.001 in mole fraction. The estimated uncertainty in the bubble point pressure is on the order of 0.07 MPa for the systems studied here. A detailed error analysis is given by Darwish (1991).

Gao, W.; Gasem, K. A. M.; Robinson, R. L., Jr. High-Pressure Solubilities of Hydrogen, Nitrogen and Carbon Monoxide in Dodecane from 344 to 410 K at Pressures to 13.2 MPa. J. Chem. Eng. Data 1999b, 44, 130–132.



NOTE: The **bibliographic information**, **compound identities**, **sample descriptions**, and **mixture** were entered previously. (There are separate tutorials, which describe capture of this information, if needed.)

Property and experimental method for decane + nitrogen Help	
Property group: Composition at phase equilibrium	
Property: Mole fraction of nitrogen	
Units: Dimensionless	
	CCT the Property Group : <i>ition at phase equilibrium</i> e menu.
Experimental purpose: 2. SELECT the Property : <i>M</i> <i>fraction of nitrogen</i> , for the ex 3. The Units : <i>Dimensionless</i> are selected automatically in	
Comm (option this case based on the property.	OK Cancel

Image: Proper Help1. SELECT Method of Measurement from the listProperty grprovided. NOTE: Other can be a valid selection and should include a brief description in the Comment field	1.
Units: Dimensionless	•
Method of measurement: Other experimental method (please, describe in "Comments") Experimental purpose: Principal objective of the work	-
2. SELECT the Experimental Purpose from the list provided.	
Comment (optional) Determined from break point in p vs total volume plot. (Gao et al., J. Chem. Eng. Data, 1999, 44, 130-132.) 3. CLICK OK OK Cancel	

SELECTION of # of Phases in Equilibrium and # of Constraints

🐃 Mole fraction of nitrogen (Liquid) (Dimensionless) as function of 2 variable(s)	_ 🗆 🗙
Mixture: decane + nitrogen Phases in equilibrium: 2 Constraints: 0 Independent variables: 2 Property set # Sample # 1 Sample # 1	_
Phase of the Property Value(s) Liquid Dimensionless	0 %
Phase 2	
Independent variable 1 Multiple samples for a given component can	□ %
be accommodated, but this is rarely needed.	□ %
Definition of Measurement Results (Absolute vs Relative)	
Data presentation Experimental values	
Comments (Optional): Determined from break point in p vs total volume plot. (Gao et al., J. Chem. Eng. Data, 1999, 44, 130-132.)	
Property and method Numerical Data Cancel	

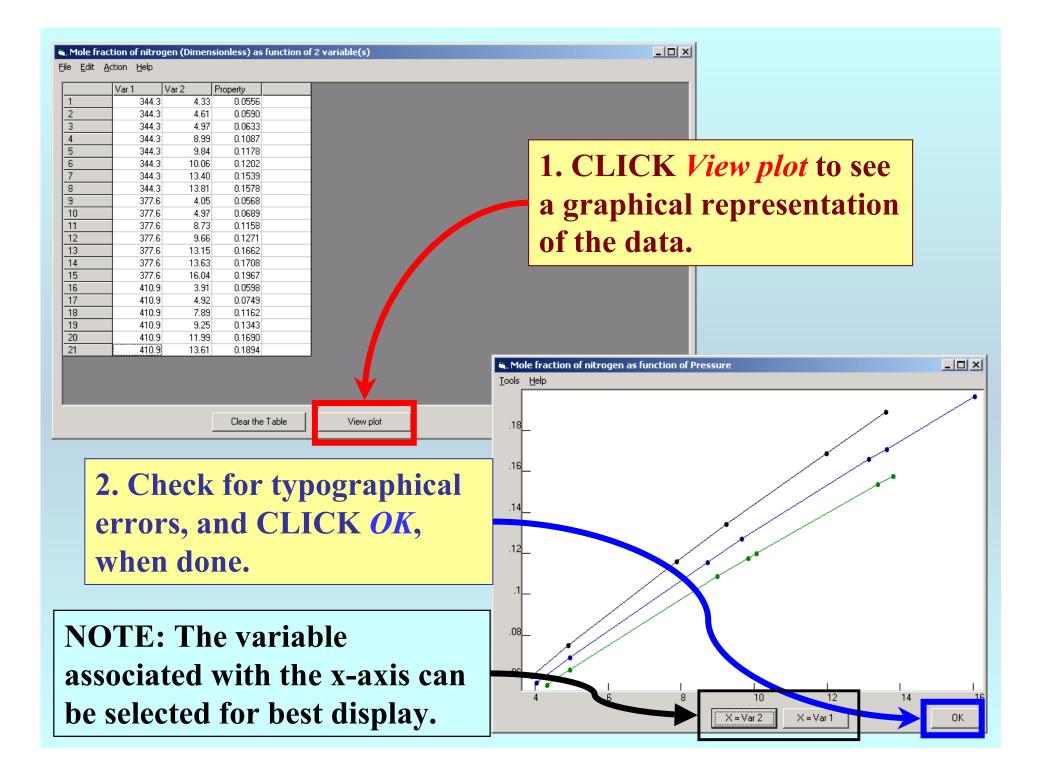
S. Mole fraction of nitrogen (Liquid) (Dimensionless) as function of 2 variable(s)	<u>_ </u>
Mixture: decane + nitrogen	•
Phases in equilibrium: 2 Constraints: 0 Independent variables: 2 Property set # 1 Sample # 1 Precision of the Property Value(s) Precision of the Property Value(s)	
Phase of the Property Value(s) Liquid	0 %
Phase 2 Independent variable 1 Independent variable 2 Independent variable 3 Independent va	
Definition of Measurement Results (Absolute vs Relative)	
NOTE: Phase, Constraint and Independent Variable field(s) appear automatically based on the entered information and the <i>Gibbs Phase Rule</i> .	

1. SELECT **Phase 2** (*gas*), **Constraint(s)** (none here) and the **Independent Variable(s)** (*T* and *p*, here) from the menus.

Mixture: decane + nitrogen	
Phases in equilibrium: 2 V Constraints: 0 V Independent variables: 2	roperty set # 1 Sample # 1 🔍
	Precision of the Property Value(s)
Phase of the Property Value(s) Liquid	■ 0.001
- Phase 2-	
Gas	
Independent variable 1	
Temperature	Units: K Uncertainty: 0.1
Independent variable 2	
Pressure	▼ Units: MegaPa ▼ Uncertainty: 0.07 □ %
Definition of Measurement Results (Absolute vs Relative)	
2. TYPE the Constrain	it Value (if required)
Data presentation	
Experimental values and SELECT Units f	or the variable(s) and
Constraint(s) Include	Uncortaintion if
Constraint(s). Include	
Comments (Optional): Det known.	

S. Mole fraction of nitrogen (Liquid) (Dimensionless) as function of 2 va	ariable(s)
Mixture: decane + nitrogen	
Phases in equilibrium: 2 Constraints: 0 Independent varia Phase of the Property Value(s) Liquid	1. SELECT <i>Direct Value</i> (as
- Phase 2	compared with <i>Relative Value</i>)
Gas	from the list defining the
Temperature of Liquid	Measurement Results
Pressure of Liquid	Units: MegaPa Uncertainty: 0.07 🗆 %
- Definition of Measurement Results (Absolute vs Relative) Direct value	2. SELECT the appropriate
	Data presentation
- Data presentation	
Experimental values	method. Experimental values
	here.
Comments (Optional): Determined from break point in p vs total volume plot. (Ga	o et al., J. Chem. Eng. Data, 1999, 44, 130-132.j
Property and method	Numerical Data Cancel
3. CLIC	CK Numerical Data

Mole fraction of nitrogen (Dimensionless) as function of 2 values of the second secon	TYPE, or PASTE the property v See nex	e variat values in t page	ole and ito the t	able.
	x ₁	p/MPa	xı	p/MPa
		Dec	ane	
	0.0550	344.		0.04
	0.0556 0.0590	4.33 4.61	0.1178 0.1202	9.84 10.06
	0.0633	4.97	0.1539	13.40
	0.1087	8.99	0.1578	13.81
		377.		
	0.0568	4.05	0.1662	13.15
	0.0689 0.1158	4.97 8.73	0.1708 0.1967	13.63 16.04
	0.1271	9.66	0.1907	10.04
		410.	qк	
	0.0598	3.91	0.1343	9.25
Clear the Table	Vit 0.0749	4.92	0.1690	11.99
	0.1162	7.89	0.1894	13.61

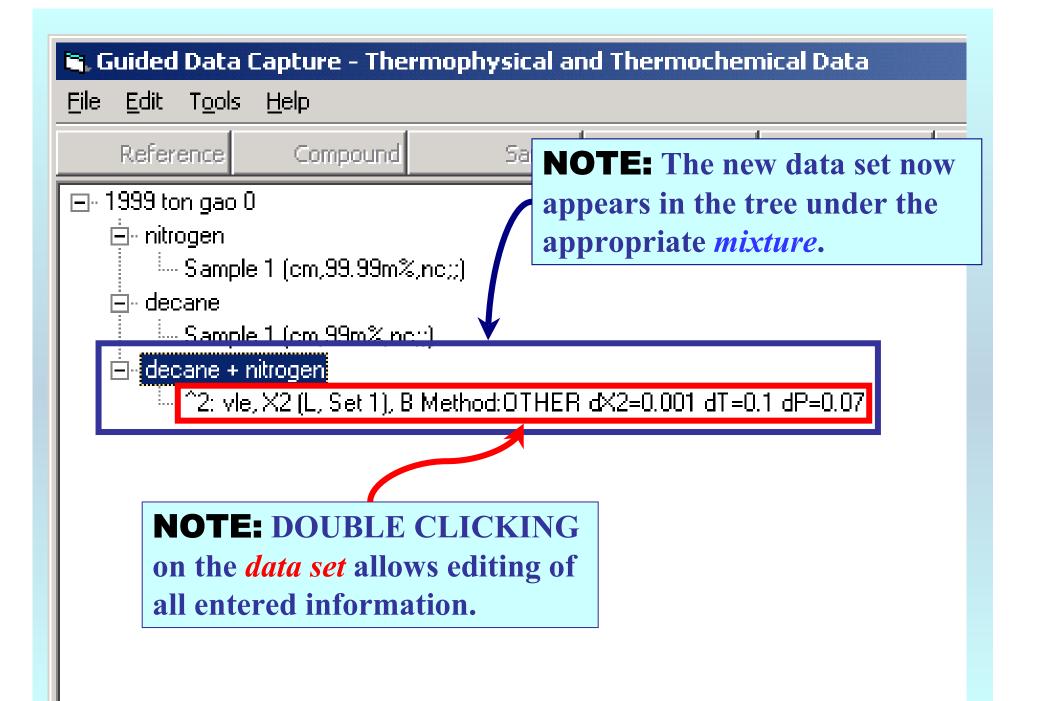

Mole fraction of nitro	gen (Dimensionless)) as function of	2 variable(s))
------------------------	---------------------	------------------	---------------	---

File Edit Action Help

	Var 1	Var 2	Property				_	_	
1	344.3								
2	344.3		0.0590						
3	344.3	4.97	0.0633						
4	344.3								
5	344.3								
6	344.3	10.06	0.1202						
7	344.3	13.40	0.1539						
8	344.3	13.81	0.1578						
9	377.6	4.05	0.0568						
10	377.6	4.97	0.0689						
11	377.6	8.73	0.1158			Table 1 Solub	dility of Nitrog	on in a Docoffi	
12	377.6	9.66	0.1271			Table 1. Solub Hydrocarbons		en m <i>n</i> -Parann	n
13	377.6	13.15	0.1662			-			
14	377.6	13.63	0.1708			<i>x</i> ₁	p/MPa	xı	p/M
15	377.6	16.04	0.1967				Dec	ane	
16	410.9	3.91	0.0598				344	.3 K	
17	410.9	4.92	0.0749			0.0556 0.0590	4.33 4.61	0.1178 0.1202	9.8 10.0
18	410.9	7.89	0.1162			0.0633	4.97	0.1539	13.4
19	410.9	9.25	0.1343			0.1087	8.99	0.1578	13.8
20	410.9	11.99	0.1690				377	.6 K	
21	410.9	13.61	0.1894			0.0568	4.05	0.1662	13.1
						0.0689 0.1158	4.97 8.73	0.1708 0.1967	13.6 16.0
						0.1271	9.66	0.1967	16.0
								.9 K	
						0.0598	3.91	0.1343	9.2
			Chandler	т	A Constant	0.0749	4.92	0.1690	11.9
			Clear the	Table	View plot	0.1162	7.89	0.1894	13.6

- 🗆 ×

NOTE: Simple CUT/PASTE procedures can be used within the table to convert the original table into the required number of columns. (This can also be done externally in spreadsheet software, e.g., EXCEL.)



Mole fraction of nitrogen (Dimensionless) as function of 2 variable(s)

<u>File Edit Action H</u>elp

	Var 1	Var 2	Property	
	344.3	4.33	0.0556	
	344.3	4.61	0.0590	
	344.3	4.97	0.0633	
	344.3	8.99	0.1087	
	344.3	9.84	0.1178	
	344.3	10.06	0.1202	
	344.3	13.40	0.1539	
	344.3	13.81	0.1578	
	377.6		0.0568	
	377.6	4.97	0.0689	
	377.6			CLICKACCPI
2	377.6	9.66		
3	377.6	13.15	0.1662	
4	377.6	13.63	0.1708	
5	377.6	16.04		
6	410.9	3.91	0.0598	
7	410.9	4.92		
3	410.9	7.89		
9	410.9	9.25		
)	410.9	11.99		
1	410.9	13.61	0.1894	
			Clear the Tabl	le View plot Accept Cano

- D ×

Continue with other compounds, samples, properties, reactions, etc...

or save your file and exit the program.