
 
Figure 1.  Schematic of a refrigerator shown as a 
closed thermodynamic element along with the 
important thermodynamic parameters. 
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Thermodynamic fundamentals of closed systems 
 
     Figure 1 shows a schematic of a refrigerator and the important thermodynamic quantities 
associated with it.  The function of the refrigerator is to absorb the heat flow �Qc  from some cold 
reservoir at a temperature Tc and reject the heat flow �Q0  to the surrounding at some ambient 
temperature T0.  The net input power required to operate the refrigerator is �Wco  and the 
refrigerator may provide some external power flow �Wexp  from an expander.  Many refrigeration 
systems either produce no expansion work, or they recover the expansion work internally, in 
which case there still is no expansion work crossing the system boundary.  Thus, �Wexp  is often 
zero for a complete refrigeration system.  The coefficient of performance COP of a refrigerator is 
defined as 
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A relationship between the parameters � , , � , , � , � ,Q T Q T W Wc c co exp0 0  and COP may be found by 
utilizing the first and second laws of thermodynamics.  For a closed system in which no mass 
crosses the system boundaries the first law (conservation of energy) is given as 
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where d(mu)/dt is the time rate of change of the internal energy of the refrigerator of mass m and 
specific internal energy u.  For steady-state conditions d(mu)/dt = 0.  The second law (balance of 
entropy) is given as 
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where Tc is the cold end temperature, T0 is the ambient temperature, d(ms)/dt is the time rate of 
change of the entropy of the refrigerator and �Sirr  is the rate of entropy generation due to 
irreversible processes, which is always positive.  For steady-state conditions d(ms)/dt = 0.  We 
see that the second law relates the heat flows at the warm and cold ends of the refrigerator to the 
temperatures. 
 
     By solving Eq. (2) for �Q0  and substituting into Eq. (3) we combine the first and second laws 
and obtain the following expression for the COP under steady-state conditions: 
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As this equation shows, if the expansion work leaves the system and is not recovered internally, 
it represents lost work and degrades the COP of the refrigerator.  Similarly, the irreversible 
entropy production �Sirr  multiplied by the ambient temperature represents another form of lost 
work in the system.  A common parameter used to express the performance of cryocoolers is the 
reciprocal of the COP, known as the specific power, 
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For an ideal refrigerator there are no irreversible processes ( �Sirr = 0 ), and the expansion work is 
recovered internally ( �Wexp = 0) so the ideal or maximum COP, known as the Carnot value of 
COP, is given by Eq. (4) as 
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The efficiency (more precisely the second law efficiency) of the refrigerator is usually expressed 
in relation to the Carnot COP as 

η = COP
COPCarnot

.             (7) 

 
Figure 2 shows the results of a 1974 survey on the efficiency of various cryogenic refrigerators 
as well as the results of a 1998 update1,2.  Note that the efficiency of small cryocoolers is only a 
few percent of Carnot, whereas for large systems the efficiency can be as high as 40 % of Carnot.  
This figure does not distinguish between various cycles, but such a comparison will be made 
later.  The use of this second-law efficiency from Eq. (7) has the advantage of removing most of 
the temperature dependence. 
 
     The parameters and the equations introduced so far pertain to a complete refrigeration system 
where there are no mass flows crossing the system boundaries.  Such a system is known as a 
closed thermodynamic system.  These equations are sufficient for characterizing the complete 
system.  For many commercial systems no further information is available.  However, in order to 
understand the thermodynamics of the internal processes within a refrigerator or cryocooler, we 
must divide the system into its various components and analyze the processes within these 
components.  As a result we now have mass flow crossing the system boundaries, and we must 
use the thermodynamics of open systems to analyze the processes within these systems. 



Figure 2.  The second-law efficiency of cryogenic refrigerators as a function of the 
refrigeration capacity. 

 
Figure 3.  Schematic of a refrigerator or refrigerator component as an open 
thermodynamic system. 

 
Thermodynamic fundamentals of open systems 
 
     Figure 3 shows the important thermodynamic parameters associated with an open system.  
The system can represent either a component of a refrigerator, as shown in Fig. 3, or a complete 
refrigeration system, such as liquefier with a mass flow in to and out of the system.  Figure 3a 
shows the energy terms used in the first law and Fig. 3b shows the entropy terms used in the 
second law.  The temperature of the reservoir transferring heat to the system is at a temperature 
Tj.  The open system differs from the closed system by the addition of the mass flow terms �m  
and the associated specific enthalpy h and specific entropy s of the flowing fluid at a particular 



location.  For the open system shown in Fig 3a the first law now becomes 
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The second law for an open system, as shown in Fig. 3b, is 
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The last term in each equation is zero for steady-state operation.  Combining these two equations 
for steady-state operation yields 

� � ( ) ( ) � .W m h T s h T s T Sj i j e j irr= − − − −         (10) 

Equation (10) shows that if the process is reversible ( �Sirr = 0 ), the work or power produced by 
the process is a maximum and given by 

� � ( ) ( ) .W m h T s h T srev j i j e= − − −          (11) 
Equation (11) forms the basis of much of the analysis of regenerative systems, as we shall see in 
the following section.  When irreversibilities are present the work recovered is reduced to 

� � � .W W T Srev j irr= −           (12) 

The quantity T Sj irr
�  is known as the lost work �

,Wlost j  referred to the temperature Tj.  For heat 

flow �Qj  from several reservoirs at some temperature Tj and several flow streams the general 
expression for the combined first and second laws for steady-state operation is given by3 
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where T0 is the temperature of the surroundings or the atmosphere and represents the reservoir 
for j = 0.  The lost work T Sirr0

�  referred to the ambient temperature represents the additional 
input power required to drive a refrigerator because of irreversibilities in the system. 
 
     The combination of terms (h-T0s) in Eq. (13) is called the availability function, which is 
different from the Gibbs function (h-Ts), where T is the temperature of the process and can be 
some temperature other than the surrounding temperature.  The availability ψ, also known as the 
exergy ex, of a process to provide the maximum reversible work is given by 
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where h0 and s0 are properties usually evaluated at the temperature and pressure of the 
surrounding.  I prefer the use of the term availability rather than exergy because it is more 
descriptive.  That is, for a given set of inlet conditions the fluid is ‘available’ to provide as much 
work per unit mass flow as the availability of the inlet state, providing the work is extracted 
reversibly in a steady-state process and exits at atmospheric pressure and temperature.  The 
extraction of the work can be carried out with an expander piston or turbine, but in an actual case 
there will be some irreversibilities associated with the process.  The actual work recovered would 
then be given by Eq. (13) if �Sirr  can be evaluated.  For any steady-state process in thermal 
contact with the surrounding at temperature T0 the reversible work per unit mass flow available 
for any inlet and outlet conditions is given by 



Figure 4.  Schematics of the three common regenerative cryocoolers. 
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Thermodynamics of oscillating (regenerative) systems 
 
     Types of Regenerative Systems.  The thermodynamic laws discussed in the previous section 
deal with flow in one direction.  Equations (8) and (9) can be used for instantaneous flow when 
the last term in each equation is included to account for the changing internal energy and entropy 
of the system.  For regenerative cryocoolers the flow and pressure are oscillating, typically at 
frequencies ranging from about 1 Hz to 60 Hz.  This section discusses how to apply the 
thermodynamics discussed in the previous section to regenerative systems.  Figure 4 shows 
schematics of the three primary regenerative cryocoolers in current use.  The working fluid is 
almost always helium gas.  The oscillating pressure can be generated with a valveless 
compressor (pressure oscillator) as shown in Fig. 4 for the Stirling and pulse tube cryocoolers, or 
with valves that switch the cold head between a low- and high-pressure source, as shown for the 
Gifford-McMahon cryocooler.  In the latter case a conventional compressor with inlet and outlet 
valves is used to generate the high- and low-pressure sources.  With the Gifford-McMahon 
cryocooler an oil-lubricated compressor is usually used and oil removal equipment can be placed 
in the high-pressure line, where there is no pressure oscillation.  The use of valves greatly 
reduces the efficiency of the system.  Pulse tube cryocoolers can use either source of pressure 
oscillations, even though Fig. 4 indicates the use of a valveless compressor.  The valved 
compressors are modified air-conditioning compressors, and they are used primarily for 
commercial applications where low cost is very important.  The amplitude of the oscillating 
pressure may typically be anywhere from about 10 % to as high as 50 % of the average pressure.  
Average pressures are usually in the range of 1.5 to 3.5 MPa.  The heat rejected at the warm end 



of the pulse tube is at the temperature Th, which may be different from T0. 
 
     The main heat exchanger in regenerative cycles is called a regenerator.  In a regenerator, 
incoming hot gas transfers heat to the matrix of the regenerator, where the heat is stored for a 
half cycle in the heat capacity of the matrix.  In the second half of the cycle the returning cold 
gas, flowing in the opposite direction through the same channel, absorbs heat from the matrix 
and returns the matrix to its original temperature before the cycle is repeated.  Very high surface 
areas for enhanced heat transfer are easily achieved in regenerators through the use of stacked 
fine-mesh screen or packed spheres. 
 
     Time-Averaged Behavior.  Regenerative cryocooler systems can be analyzed as a closed 
system by applying Eqs. (1) through (7) of the first section.  Generally the small temperature 
oscillations on the external surfaces of regenerative cryocoolers are small enough to ignore, and 
we can let the last term in Eqs. (2) and (3) be zero under steady-state conditions.  Similarly, the 
small temperature oscillations on the exterior surfaces lead to small oscillations in the heat flow 
superimposed on a much larger steady heat flow.  We also ignore such small oscillations.  The 
work or power undergoes large oscillations from positive to negative values whenever pistons 
are used.  Such oscillations are characteristic of piston compressors and expanders, but normally 
we are interested only in the time-averaged values.  Thus, even in recuperative cryocoolers, such 
as the Joule-Thomson, Brayton, and Claude cycles, they are analyzed by making use of time-
averaged quantities, even though the oscillation amplitudes of all parameters but the power are 
very small. 
 
     The analysis of components of regenerative systems requires the use of thermodynamics for 
open systems, but now the mass flow must be treated as an oscillating parameter.  Most of the 
information we desire about such systems is time-averaged information, so the flow parameters 
are then time-averaged over one cycle.  The time-averaged mass flow is given by 
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In most cases � � =�m 0 , although occasionally a steady (DC) component of flow may be 
superimposed on the oscillating (AC) component.  The thermodynamics of open systems makes 
use of the products of mass flow and another time-varying quantity such as specific enthalpy h or 
specific entropy s.  Each of these products may vary throughout the cycle, but have finite time-
averaged values.  For example, the time-average enthalpy flow is 
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and the time-averaged entropy flow is 
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     When time averages are introduced into Eqs. (8) and (9) we obtain the first and second laws 
for open oscillating systems transferring heat with a heat sink at Tj: 
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where � �U  and � �S  are the internal energy and entropy of the system averaged over one cycle.  
For steady state systems these last terms in Eqs. (19) and (20) are zero.  As an example, the 
refrigeration power � ��Q c  in a pulse tube refrigerator is given by Eq. (19) as the difference in the 
time-average enthalpy flows between the pulse tube and the regenerator because there is no work 
being extracted at the cold end.  Combining Eqs. (19) and (20) for steady-state operation gives 
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In the previous section we discussed the concept of availability, where the reference state was the 
atmospheric pressure and temperature.  Availability can also be used here with oscillating 
systems, but for a constant pressure and temperature � � =�H 0 0  and � � =�S 0 0  because there is no 
time-averaged mass flow.  With such a reference state the maximum reversible power that can be 
extracted becomes 

� � = � � = � � = � �− � �Ψ E W H T Sx max
� � � ,0          (22) 

which represents the total availability or exergy (not per unit mass) at any location in the system.  
If a piston were placed in the fluid at any location, Eq. (22) gives the maximum power that could 
be recovered as long as it was done reversibly, or isothermally at the temperature T0, and 
expanded to atmospheric pressure.  However, this definition of availability is not so satisfying 
because the system in normal operation is never in equilibrium with atmospheric pressure.  There 
is no mechanism to recover the work if the gas were to expand to atmospheric pressure.  Instead 
a more appropriate reference state is the average or mean pressure Pm  in the system.  In 
recovering work from the oscillating system the backside of the expansion piston should be at 
the average pressure, unless the gas is to be expanded all the way to zero pressure.  The 
maximum reversible power flow � ��W max  becomes zero when the dynamic pressure or the 
amplitude of the pressure oscillation 

P P Pd m= −( )           (23) 
decreases to zero.  The reference temperature is still kept at the atmospheric temperature T0.  
However, we find that Eq. (22) sometimes can be even more useful when the reference 
temperature is the average temperature Tm at any location.  The PV power that can be recovered 
reversibly at that temperature at that location is usually called the acoustic power, the PV power 
flow, or the hydrodynamic power.  This acoustic power is given by 
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where �V  is evaluated at Tm.  The constant reference pressure in Eq. (24) cannot be ignored 
because 

� .Vdt
0
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That is, the volume flow �V  past a fixed boundary is not conserved even though mass flow is 
conserved.  The volume flow depends on the density, which depends on the pressure, and that 



varies throughout the cycle.  The power flow calculated by Eq. (24) is equivalent to the power 
calculated from the PV diagram that a fictitious isothermal piston follows at that location.  The 
volume flow of the piston is different from that of the volume flow past a fixed boundary and is 
conserved over a cycle.  Because we have considered the expansion piston to be isothermal and 
reversible there is no additional work term associated with the volume of gas between the 
boundary and the piston.  The volume swept by a fictitious piston is a very useful parameter in 
the design of pulse tubes because that swept volume must be kept significantly smaller than the 
volume of the pulse tube in order to provide for thermal buffering.  The relationship between the 
acoustic power or PV power flow and the time-averaged enthalpy and entropy flows is then 
given by the combination of Eqs. (21) and (24) as 

� � = � �− � �P V H T Sd m
� � � .           (26) 

The acoustic power does not represent an actual work term, but it indicates the potential to do 
reversible work if an expander piston were placed in the fluid at that location with the backside 
at the average pressure.  Equation (26) is a rigorous expression that applies to all regenerative 
refrigerators and is valid for systems with losses, for real gases, and for any flow waveform. 
 
     Instantaneous Behavior.  The detailed behavior within components of a regenerative 
refrigerator can be analyzed only by investigating the behavior within one cycle.  For such 
analyses we must use the general form of the first law given by Eq. (8).  A full analysis also 
requires the use of differential equations for the conservation of mass as well as momentum.  
These four differential equations are solved simultaneously using finite-difference techniques.  In 
most cases a one-dimensional solution is adequate, although higher-order flow effects, 
particularly in the pulse tube, may require a two-dimensional approach.  The solution to these 
equations shows how the losses depend on detailed geometry and properties of the regenerator 
and on the operating conditions in the system.  For locations where no work crosses the 
boundary the four equations are: 
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              Conservation of energy (Matrix)
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Conservation of Mass
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In these equations rh is the hydraulic radius, Ag is the gas cross-sectional area, x is the axial 
position, k is the thermal conductivity of the gas, km is the axial thermal conductivity of the 
matrix, ng is the porosity of the matrix, ρmcm is the volumetric heat capacity of the matrix, and fr 
is the Fanning friction factor.  The last term in Eq. (30) causes a component of pressure gradient 
in phase with the acceleration of the working fluid mass and is referred to as the inertance effect 
in analogy with the inductive effect in electrical circuits.  It is made use of in the inertance tube 
of pulse tube refrigerators. 
 
     The equation for conservation of mass, Eq. (29), is often integrated over the length of a 
particular component in order to relate the mass flow rate at the two ends of the component.  For 
any isothermal component with a perfect gas this integrated equation relates the hot end mass 
flow to the cold end mass flow by 
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where the parameters in bold type are time varying parameters with arbitrary phase relationships, 
V is the gas volume of the element, R is the gas constant per unit mass, and Ta is the average 
temperature in the component.  For a regenerator that spans a large temperature difference, we 
typically use the log-mean average for Ta.  For the end components, such as the expander and the 
compressor, there is no mass flow crossing the moving system boundary, but there is work 
crossing the boundary at that location.  Mass conservation applied to the expander and with the 
assumption of isothermal expansion yields 
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where Ve is the instantaneous expander gas volume.  For relatively small pressure amplitudes 
such as those typical in Stirling refrigerators and Stirling-type pulse tube refrigerators, Eq. (32) 
can be approximated by 
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where VE is the total swept volume of the expander, and the average volume during the cycle is 
taken as half that volume.  For the isothermal compressor and with the proper sign convention 
for the flow direction we have the equivalent relationship 
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where VCO is the total swept volume of the compressor and Vco is the instantaneous compressor 
gas volume. 
 
     For an adiabatic component such as the pulse tube, we can derive a similar expression, but we 
start first with the first law for an open system, Eq. (8).  Because no work is being done in the 
pulse tube and because there is no heat transfer in the adiabatic process, we are left with the 
following simplified equation when gas conduction is ignored 
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where the subscript ht refers to the hot end of the pulse tube, and Vt is the volume of the pulse 
tube.  We now assume ideal gas behavior in order to use the following relationships 
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where cp and cv are the specific heats of the gas at constant pressure and at constant volume, 
respectively.  When the relationships of Eq. (36) are substituted into Eq. (35) we have 
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where γ is the ratio of the specific heats.  Note that the temperature used in the last term is the 
temperature of the cold end and not the average temperature. 
 
     Harmonic Approximations.  In the Stirling refrigerator and the Stirling-like pulse tube 
refrigerator the pressure, flow, and temperature oscillations are quite close to sinusoidal 
behavior.  In these refrigerators the use of harmonic (sinusoidal) approximations in the equations 
discussed here can quite accurately describe their behavior and eliminate the need for numerical 
integration in the time domain.  When the pressure and flow vary sinusoidally the time-averaged 
quantities such as the PV power flow are given by 
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where the subscript 1 refers to amplitude of the sinusoidal quantity, the subscript m refers to the 
mean value, and θ is the phase angle between the pressure and flow.  Equation (38) shows that 
for a given amplitude of mass flow the maximum PV power flow through a regenerator can be 
achieved when the pressure and the flow are in phase.  Of course, that phase relationship can 
occur at only one location within the regenerator (generally the average or midpoint) because the 
phase of the mass flow varies considerably with position.  Minimizing the amplitude of mass 
flow in the regenerator is important because the losses (both pressure drop and thermal) are 
proportional to the amplitude of mass flow.  Losses within an expander or a pulse tube are only 
weak functions of mass flow amplitudes, so the phase optimization should occur within the 
regenerator rather than at the cold end. 
 
     The use of the harmonic approximation allows for analytical solutions to most of the 
equations given here to be obtained by utilizing complex variables to describe the harmonic 
behavior.  Thermoacoustic theories make use of the harmonic approximation and rely on 
complex variables to solve equations.  The harmonic approximations also allow the use of 
phasors to show graphically the solution to various equations and the relative phase relationships 
between different oscillating quantities.  Figure 5 shows example phasor diagrams representing 
the simultaneous solution of Eqs. (31), (33), (34), and (37) in various components of a Stirling 
and a pulse tube refrigerator.  The compressor for both cases is assumed to be isothermal and the 
Stirling expander is also assumed to be isothermal.  Processes in the pulse tube component are 
assumed to be adiabatic.  The pulse tube refrigerator modeled in Fig. 5 is a simple orifice type, in 
which the mass flow at the orifice is in phase with the pressure in the pulse tube.  The use of a 
secondary orifice or an inertance tube would cause the mass flow to lag the pressure at the warm 
end of the pulse tube and provide a more favorable phase relationship in the regenerator.  All of 
the vectors (phasors) in Fig. 5 rotate about the axis origin at the operating frequency ω and 
maintain the same phase relationship with each other at all times.  The projection of each phasor 



Figure 5.  Phasor diagrams for the Stirling and pulse tube refrigerators, showing graphically the solution to the 
equation for conservation of mass.  The equation for conservation of energy is also used for the pulse tube. 

onto the real axis gives the sinusoidally varying values for each parameter.  With the harmonic 
approximation, the time derivative of a parameter, for example �P , leads the parameter, for 
example P, by π/2 or 90°.  The graphical solutions shown in Fig. 5 relate the system pressure 
amplitude to the geometry of the system and the temperatures at various locations.  The phasor 
diagrams of Fig. 5 are also a useful indicator of the PV power flow at various locations.  
According to Eq. (38) the PV power flow is proportional to P m1 1� cosθ , which is simply the dot 
product of these two vectors (phasors).  For a given pressure amplitude the PV power flow is 
proportional to the projection of the mass phasor on the pressure phasor.  As Fig. 5 shows the 
flow rate at the face of the compressor piston is different from the flow rate past the fixed 
boundary at the output of the compressor.  However, because the projection of both flows onto 
the pressure phasor is the same, the PV power flow at both locations is the same as long as the 
temperature is the same. 
 
Energy flows in regenerative refrigerators 
 
     We now investigate the behavior of enthalpy and entropy flow in two ideal elements, a 
perfectly isothermal element and a perfectly adiabatic element.  An ideal pulse tube refrigerator 
consists of a collection of such elements.  Ideal heat exchangers and regenerators are represented 
by isothermal elements, in which the temperature at any location does not change with time.  The 
pulse tube and some compressor cylinders are represented by adiabatic elements, in which there 
is no heat transfer between the gas and the element walls even on an instantaneous basis.  For 
enthalpy flow in an isothermal element where T is a constant at any location, we see from Eq. 
(17) that for an ideal gas, where cp and h are independent of pressure, � � =�H 0 whenever 



 
Figure 6.  The work, heat, PV power, enthalpy, and entropy flows in 
an ideal and a real pulse tube refrigerator.  Positive flow is to the right. 

� � =�m 0 .  For a real gas h is a function of pressure and � ��H  is finite even for a perfect heat 
exchanger or regenerator.  Because s is a function of pressure at a constant temperature, even for 
an ideal gas, � ��S  is finite in an isothermal element.  However, in an ideal regenerator there is no 
time-averaged heat flow to the system, so from Eq. (20) � ��S  is a constant throughout the 
regenerator.  In an ideal adiabatic element the entropy s in Eq. (18) is independent of time 
because there is no instantaneous heat transfer or irreversible process to cause it to change.  
Thus, � ��S  = 0 in the ideal adiabatic element.  Because � ��Q  = 0 in an ideal adiabatic element, 
� ��H  will be constant throughout the element according to Eq. (19) as long as there is no work 
being done along the element.  An example is the pulse tube element where no work is being 
done.  We summarize the behavior of these two ideal elements here as 

ideal isothermal element        constant;: � , �� � = � � =H S0        (39) 
ideal adiabatic element     constant;    : � � .� � = � � =H S 0        (40) 

 
     Figure 6 shows a schematic of a pulse tube refrigerator and the behavior of the energy flows 
at various locations.  The upper set of curves is for an ideal refrigerator whereas the lower set of 
curves is for a real refrigerator with losses.  Beginning at the left we see that the piston 
introduces PV power into the system.  The system boundary is at the face of the piston, and 



because the system boundary moves with a volume velocity of �V  there is a true thermodynamic 
work term at this system boundary.  The moving piston causes an oscillating mass flow and 
pressure within the helium working fluid that gives rise to enthalpy, entropy, and exergy (or 
availability) flows.  Our sign convention for flow terms is positive for flow to the right.  To the 
right of the piston inside the compressor there exists within the helium working fluid an acoustic 
power flow, commonly called a PV power flow, that is equal to the input PV power.  It moves to 
the right (positive) and is related to the enthalpy and entropy flows by Eq. (26).  In the ideal 
pulse tube system (no pressure drops) � �P Vd

�  does not change until it begins to flow through the 
regenerator.  The regenerator is an isothermal element at any location, but the temperature 
changes from one end to the other.  For an ideal gas the specific volume is proportional to 
temperature, which suggests that � �P Vd

�  varies in proportion to temperature through the 
regenerator.  Also, in the perfect regenerator with an ideal gas, � ��H  = 0 and � ��S  is a constant 
from one end to the other.  The negative value of � ��S  indicates that it travels to the left toward 
the source of the work input.  Equation (26) then shows that because � � = − � �P V T Sd m

� �  in this 
case, � �P Vd

�  must vary in proportion to the average temperature Tm at any location.  In the 
perfectly adiabatic pulse tube component � ��S  = 0 and � ��H  is a constant from one end to the 
other (no heat or work input).  Equation (26) then shows that � � = � �P V Hd

� �  in this case and must 
be constant through the pulse tube component.  The unique function of the pulse tube component 
is its ability to transfer the acoustic power across a temperature gradient with no change in value.  
A more descriptive name for the pulse tube component might be a work transfer tube or a 
thermal buffer volume, but custom has given it the name ‘pulse tube’ even though smooth 
sinusoidal oscillations of pressure and flow can occur within it.  The enthalpy flow and the 
entropy flow both change at the heat exchangers in accordance with the first and second laws 
given by Eqs. (19) and (20) because of the heat flow at those locations.  However, the acoustic 
power does not change at those locations since the change in the enthalpy and entropy terms in 
Eq. (26) cancel each other.  The heat absorbed at the cold heat exchanger and the heat rejected at 
the warm heat exchanger are simply equal to � ��H  in the pulse tube.  These heat flows at the two 
ends are also related to the entropy changes there from the second law, Eq. (20).  It is also the 
second law that shows that � ��S  is a constant throughout a perfect regenerator, which then relates 
the heat absorbed at the cold end to the heat rejected at the aftercooler by the expression 

� � = � �� �

.Q
T

Q
T

c

c

0

0
          (41) 

The time-averaged availability or exergy flow � �Ex  given by Eq. (22) is also shown in this 
figure, with the reference pressure being the average or mean pressure.  In the ideal case it 
changes only with heat flow at some temperature other than ambient. 
 
     The lower set of curves in Fig. 6 show the energy flows for a real system where there are 
losses that generate entropy throughout the system.  This example is for the same net 
refrigeration power �Qc  as for the ideal case.  We see that the losses everywhere in the system 
lead to a larger input power at the compressor and a larger heat rejection at the aftercooler.  The 
heat flows at the heat exchangers are also shown to occur over the entire length of the heat 
exchanger instead of at the boundary for the ideal case.  The finite enthalpy flow in the 



regenerator also leads to an increased heat flow from the heat exchanger at the warm end of the 
pulse tube.  Losses in the pulse tube and the regenerator show up as changes in the entropy and 
exergy flows through those components.  In the case of the Stirling refrigerator an expander 
piston or displacer is placed in the system just to the right of the cold heat exchanger and part 
way into the ‘pulse tube’ in Fig. 6.  In that case there is no flow past that system boundary and all 
the flow terms such as acoustic power, enthalpy flow, and entropy flow are zero beyond that 
boundary with the expander.  Real power � ��

expW  is extracted from the system by the expander 

(moving boundary) and is equal to the acoustic power � �P Vd
�  at that location only if the 

expansion is reversible and isothermal.  According to the first law the actual power extracted is 
equal to the enthalpy flow entering the expansion space if it is an adiabatic process.  The heat 
absorbed still occurs at the heat exchanger in this adiabatic process.  For an isothermal expansion 
the expander face must be located within the cold heat exchanger, in which case the enthalpy 
flow there is zero in the ideal case and the first law shows that the refrigeration power is equal to 
the power extracted by the expander, which in turn is equal to the acoustic power for a reversible 
process.  In practice the irreversibilities associated with the expansion process lead to extracted 
power that may be only about 85 % of the acoustic power � �P Vd

� . 
 
     Unlike recuperative systems, which have a steady mass flow in one direction, there is no 
time-averaged mass flow in regenerative systems.  Thus, a question often arises as to where the 
heat goes that enters the cold end.  Some say it is transported by the enthalpy to the heat 
exchanger at the warm end of the pulse tube.  Others will say the regenerator ‘pumps’ the heat 
from the cold end to the warm end of the regenerator and rejects it at the aftercooler.  In that case 
it must travel with the entropy, which is flowing from the cold end toward the compressor.  
Those who argue this second point often multiply the entropy flow by the local average 
temperature along the length of the regenerator, T Sm� �� , and call it the heat flow from the cold to 
the warm end of the regenerator that increases in proportion to the temperature.  If one observes 
thermodynamic principles closely, neither argument is entirely correct.  The first point I wish to 
make here is that heat can flow only from a higher temperature to a lower temperature.  That is 
the only type of heat recognized by the first and second law of thermodynamics.  Heat can flow 
from a heater to the cold gas inside the cold heat exchanger because of a small temperature 
gradient between the heater and the gas.  That heat then changes the temperature of the gas 
flowing through the heat exchanger and increases both its enthalpy and entropy.  At that point 
‘heat’ has vanished and has been converted into the altered gas properties.  Both enthalpy flow 
toward the pulse tube warm end and entropy flow toward the regenerator warm end occur 
simultaneously as a result of the heat input to the oscillating gas at the cold end.  There is no 
time-averaged ‘heat’ flow associated with either the enthalpy or entropy flows.  It is only at the 
warm ends where thermal contact to the surrounding is provided that there is heat flow from the 
warmer gas there to the cooler surroundings.  The heat input at the cold end alters the gas 
properties so as to cause heat to be rejected at both the warm end of the pulse tube and the warm 
end of the regenerator.  The only time-averaged heat flows in the system occur between the gas 
and the heat exchangers.  When system boundaries are drawn around either the regenerator or the 
pulse tube, there are no � ��W  or � ��Q  terms if axial conduction is ignored.  The energy flows 
associated with � ��H  and � ��S  have the potential to transfer heat with the surrounding whenever 
there is a change from an isothermal to an adiabatic element to cause these flows to change.  The 



product T Sm� ��  in a regenerator could be considered the potential to transfer heat with the 
surrounding wherever the proper elements (heat exchanger and an adiabatic element to block 
entropy transport) are inserted in the system to transfer the heat.  Likewise, the flow has the 
potential, or availability, to do real work whenever a moving piston is inserted into the system at 
some location. 
 
     To the right of the warm heat exchanger shown in Fig. 6 is a flow impedance.  It can be an 
orifice, a capillary, a sintered plug, or an inertance tube that makes use of the inertia of the 
oscillating helium to shift the phase between the mass flow and the pressure.4-7   This impedance 
is an intrinsic loss element in which the pressure drop causes the loss of the acoustic power 
through an irreversible production of entropy.  In the Stirling refrigerator this available work is 
recovered at the cold end by use of a displacer, which feeds the recovered work back into the 
system at the other end of the displacer.  In a pulse tube refrigerator the entropy flow changes in 
the flow impedance because of the irreversible production of entropy during the pressure drop.  
In the reservoir the dynamic pressure Pd is zero, so � �P Vd

�  is zero there.  The reservoir is 
generally an adiabatic element so � ��S  will also be zero at the entrance to the reservoir. 
 
     With regard to the flow impedance there is sometimes a misconception in regards to the 
energy flow terms.  Contrary to some beliefs, the pressure drop within the flow impedance does 
not cause the impedance to heat in analogy to the flow of current through a resistor.  Instead, the 
pressure drop generates irreversible entropy �Sirr , which is different from heat, and according to 
Eq. (20) also changes the entropy flow at the orifice as shown in Fig. 6.  For steady flow in one 
direction a large pressure drop in an ideal gas results in no temperature change.  For a real gas 
the pressure drop usually results in a temperature reduction (Joule-Thomson effect).  Using the 
first law for an open system, Eq. (8), we see that there can be no temperature change in steady 
flow unless the specific enthalpy is a function of pressure.  For an ideal gas the enthalpy is 
independent of pressure.  Whether this impedance heats under oscillating flow is very much 
dependent on its geometry.  The first law for an open oscillating system, Eq. (19) shows that in 
order to have any heat transfer from the impedance/reservoir system, there must be some time-
average enthalpy transport � ��H  at the entrance to the impedance.  If the impedance is an 
isothermal element such as a capillary or hole of small diameter (orifice), � ��H  is nearly zero as 
discussed earlier and no heat is rejected in the impedance.  Instead the heat is rejected in the 
warm heat exchanger.  If the impedance is approximately an adiabatic element, such as a long 
inertance tube of large diameter, � ��H  can be large and approach the value of the acoustic power 
flow.  The inertance tube will then begin to heat until the temperature gradient in it is large 
enough to reduce � ��H  to zero.  Cooling the inertance tube/reservoir will remove an amount of 
heat equal to � ��H .  Analysis of the warm heat exchanger by use of the first law, Eq. (19), shows 
that with enthalpy transport in the inertance tube, the amount of heat that is rejected at the warm 
heat exchanger becomes 

� � = � � − � �� � � ,Q H Hh pt imp          (42) 

where � ��H pt  is the enthalpy flow in the pulse tube and � ��H imp  is the enthalpy flow in the 

impedance or inertance tube.  For sufficiently large � ��H imp  the heat rejected at the warm heat 



Figure 7.  The second-law efficiency of various types of 
cryocoolers at 80 K as a function of the compressor input power.  
Curves for constant refrigeration power are also shown. 

exchanger approaches zero and its only function then is to provide flow straightening.  Thus, its 
design may be changed.  This same situation may occur in the use of an orifice if a relatively 
large gas volume is placed between the orifice and the warm heat exchanger.  This heating effect 
in the impedance can become particularly large if the gas volume within it or in a connecting 
tube between the heat exchanger and the impedance becomes somewhat larger than the swept 
volume in a cycle at that location.  In that case this volume begins to behave just like a pulse tube 
with its ability to absorb heat at the end toward the compressor and reject heat at the opposite 
end. 
 
     If the enthalpy flow in the pulse tube is converted to work at the warm end of the pulse tube 
by the use of a moving piston,8,9 then no heat will be rejected according to the first law.  Thus, 
there is no need for a warm heat exchanger in that situation, although some flow straightening 
may be required.  When the expander piston is placed at the cold end, as in the Stirling 
refrigerator, work is recovered at that location to balance the heat input.  There is no enthalpy 
flow to the right of the expander because there is no gas flow there.  In the case of a displacer 
used for the expander the work is transmitted through the displacer to the warm end, where it 
then is reintroduced to the gas as a PV power flow.  That PV power flow and mass flow add to 
that from the compressor, which reduces the required net input power by the amount of power 
recovered at the cold end with the displacer. 
 
Losses in regenerative refrigerators 
 
Much of our previous discussion has been for ideal systems where losses have been ignored.  We 
have included the effect of irreversible production of entropy �Sirr  in the second-law analyses 
discussed previously, but we have not discussed how to calculate �Sirr  from various losses in 
regenerative cryocoolers.  Understanding the losses could lead to methods to reduce them and 
improve efficiencies of cryocoolers.  Figure 7 compares the efficiencies of various types of 
cryocoolers for a cold temperature of 80 K.10  This figure shows that efficiencies increase with 
size and that regenerative cryocoolers tend to have higher efficiencies than recuperative 
cryocoolers.  Pulse tube cryocoolers driven with Stirling-type (valveless) compressors have the 



highest efficiencies, followed closely by Stirling cryocoolers.  Gifford-McMahon (GM) 
cryocoolers and GM-type pulse tube cryocoolers have significantly lower efficiencies, which can 
be attributed to the losses in the valves and the valved compressors.  Typically a valved 
compressor or even a GM scroll compressor is only about 50 % efficient in converting electrical 
to steady-flow PV power.  The use of additional valves to obtain oscillating PV power introduces 
more losses so the overall efficiency of converting electrical to oscillating PV power may be as 
low as 35 to 40 %.  Good Stirling-type compressors can be as high as 85 % efficient in 
converting electrical to oscillating PV power.  Thus, much of the improved efficiency in 
regenerative cryocoolers is a result of the compressor.  The rest of this section deals with losses 
in the cold head and how to calculate �Sirr  from some of these losses. 
 
     For heat flow across a finite temperature difference ∆T , such as in a heat exchanger, we have 

� � = = � �z�
� �
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where T is the external temperature and Tf  is the internal fluid temperature.  A small pressure 
drop ∆P  leads to an irreversible production of entropy: 

� � = z� � ,S R
P

m Pdtirr
0 0τ

τ
∆          (44) 

where R is the gas constant per unit mass and P0 is the average pressure.  This pressure drop 
leads to a lost power at ambient temperature (additional compressor power) of  

� � = � �� � .W T Slost irr0          (45) 
In the pulse tube refrigerator the pressure drop in the flow impedance is an intrinsic loss 
associated with the refrigerator.  The PV power that could have been recovered by a piston as 
given in Eq. (24) is instead dissipated irreversibly.  For an ideal gas and all other parts of the 
pulse tube refrigerator being ideal the lost work at the warm end of the pulse tube is the same as 
the PV power flow at the cold end.  Thus, we have 
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Substituting this value into Eq. (4) and letting �Wexp = 0  shows that the COP of the ideal pulse 
tube refrigerator is 

COP T
Tpt

c=
0

,           (47) 

which agrees with the result given by Kittel.11   
 
     There is another intrinsic loss mechanism associated with the pulse tube refrigerator 
whenever finite pressure amplitudes are used.  This loss occurs at the boundary between an 
isothermal element and an adiabatic element, such as the pulse tube.  The oscillating temperature 
of the gas in the pulse tube causes a finite temperature difference to occur at the heat exchangers, 
which results in an irreversible production of entropy.  Such boundary losses have been analyzed 
previously.12-15  For an acoustic approximation, where the sinusoidal pressure amplitude P1 is 
less than about 30 % of the average or mean pressure Pm, Swift gives an approximate 
expression15 for this loss that can be rewritten as 
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where γ is the ratio of specific heats and θ is the phase between the volume flow and the pressure 
at the interface.  This expression is good to within 10 % even for P1/Pm = 0.3.  For a typical value 
of P1/Pm = 0.13 in a pulse tube, this fractional loss is 4.4% for θ = 0.  The loss occurs at both 
ends of the pulse tube, so the total loss would be 8.8 %, except that the phase at the warm end of 
the pulse tube could be as much as 60° to 70°, so the total loss can be somewhat less than 8.8 %. 
 
     Other losses within the pulse tube are due to viscous and thermal dissipation brought about by 
the interaction between the boundary layer and the tube walls that causes some deviation from 
perfect adiabatic behavior.  These losses become more serious in small pulse tubes.  Several 
thermoacoustic models16-18 exist that describe such losses in detail.  For the simple case of no 
temperature gradient the viscous and thermal losses are15 
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where ρm is the density at the mean temperature and pressure, v1 is the amplitude of the average 
velocity, δv is the viscous penetration depth, δk is the thermal penetration depth, and A is the 
surface area.  The fractional loss of PV power in a tube of radius r due to viscous and thermal 
effects in the boundary layer with no axial temperature gradient is given by 
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where L is the length of the tube, x1 is the amplitude of the gas displacement during the 
sinusoidally oscillating flow, and λ is the wavelength of sound inside the tube. 
 
     Such losses as those due to turbulence and acoustic streaming15, 19, 20 within the pulse tube are 
extremely difficult to model.  Thus, we generally rely on an empirical factor in the design of 
pulse tube refrigerators.  We call this factor the figure of merit or effectiveness of the pulse tube.  
It pertains to only the pulse tube component and makes use of Eq. (26).  As mentioned earlier a 
perfect pulse tube is a purely adiabatic element with no time-averaged entropy flow.  According 
to Eq. (26) the enthalpy flow is then equal to the PV power flow in the pulse tube, which can be 
measured relatively easy at the warm end of the pulse tube.  Any losses lead to the generation of 
irreversible entropy � ��Sirr , which is always positive, and according to Eq. (20) leads to a 
negative entropy flow (flow direction towards the compressor) in the gas.  According to Eq. (26) 
this negative entropy flow reduces the time-averaged enthalpy flow in the pulse tube.  The 
reduced enthalpy flow reduces the refrigeration power according to Eq. (19) from the first-law 
analysis.  We then define the effectiveness of the pulse tube component as 
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Early measurements21 have shown that this value depends on the pressure ratio and can vary 
from about 0.65 to about 0.85.  Values of about 0.88 at 90 K were found more recently on a 
pulse tube oxygen liquefier of high efficiency.22  A value of 0.96 was found in a very large 
system operating at 120 K, where a tapered pulse tube was used to eliminate acoustic 
streaming.23  



 
Conclusions 
 
     Thermodynamics has been a powerful tool for over a century to relate heat and work to each 
other and to the properties of fluid flow within the element being studied.  However, it has only 
been in the last 10 or 15 years that the application of thermodynamics to components of 
regenerative systems has been well understood.  In most cases the energy terms (heat and work) 
communicating with the environment are of interest only in a time-averaged sense, that is over 
time intervals much longer than the period of oscillations within regenerative systems.  Thus, the 
traditional thermodynamics of open systems applies to regenerative systems as long as time-
averaged values are used for the heat and work energy terms as well as for the fluid flow 
properties such as enthalpy and entropy flow.  However, the calculation of losses usually 
requires the application of thermodynamics of open systems on an instantaneous basis, which 
becomes much more complex.  Losses within regenerators and pulse tubes can be calculated 
accurately only by use of sophisticated numerical models.  The assumption of sinusoidal 
behavior (harmonic approximation) for the flow and pressure within regenerative systems can 
greatly simplify the calculations and often lead to analytical expressions for some losses.  Much 
progress has been made in the last 10 to 15 years on detailed analyses of losses within 
regenerative systems.  Regenerative cryocoolers, such as Stirling and pulse tube cryocoolers, are 
the most efficient cryocoolers, at least for small systems and for temperatures above about 20 K.  
Considerably more theoretical and experimental work is still required to find ways to reduce 
these losses and to improve the efficiency of regenerative refrigerators even further. 
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