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ABSTRACT 
 

High frequency operation of a pulse tube cryocooler leads to reduced regenerator 
volume, which results in a reduced heat capacity and a faster cooldown time. A pulse tube 
cryocooler operating at a frequency of 120 Hz and an average pressure of 3.5 MPa 
achieved a no-load temperature of 50 K. The cooling power at 80 K was about 3.35 W 
with a cooldown time from 285 K to 80 K of about 5.5 minutes, even though the additional 
thermal mass at the cold end due to flanges, screws, heater, and thermometer was 4.2 times 
that of the regenerator. This fast cooldown is about two to four times faster than that of 
typical pulse tube cryocoolers and is very attractive to many applications. In this study we 
measure the cooldown time to 80 K for different cold-end masses and extrapolate to zero 
cold-end mass. We also present an analytical model for the cooldown time for different 
cold-end masses and compare the results with the experiments.  The model and the 
extrapolated experimental results indicate that with zero cold-end mass the cooldown time 
to 80 K with this 120 Hz pulse tube cryocooler would be about 32 s.   
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INTRODUCTION 
 

Fast cooldown is often a desired criterion for cryocoolers. Conventionally, Joule- 
Thomson (JT) cryocoolers have been used to meet the requirements of fast cooldown. 
Open-cycle JT cryocoolers operate at very high pressure (5-8 MPa) and have a very high 
flow impedance at the cold end that is susceptible to clogging. Gifford-McMahon (GM), 
Stirling and pulse tube cryocoolers are alternatives to reach temperatures of about 50 K. 
Mullie et al. [1] reported improvements in cooldown time of resonant Stirling cryocoolers 
by matching the regenerator material heat capacity to the temperature profile that would 
exist at steady state in the regenerator. However, the improvements in the cooldown time 
were not significant. Radebaugh et al. [2] proposed a fast cooldown technique for pulse 
tube cryocooler that makes use of the resonance phenomenon that occurs with an 
appropriately sized inertance tube and reservoir volume. With a small reservoir the 
resonance condition can occur, which allows for higher PV power flows (higher 
refrigeration power). That concept applies to fast cooldown of large masses at the cold end.  
In this paper we discuss another method of fast cooldown that relies on high frequency and 
high pressure to reduce the thermal mass of the regenerator.  This method is useful for 
applications with small cold-end masses where the regenerator heat capacity has a large 
influence on the cooldown time. 
 
  
REFRIGERATION POWER DENSITY 
 

For an ideal Stirling and Stirling-type pulse tube cryocooler, the cooling power is 
equal to the acoustic power (PV power) at the cold end and is given by 
 

1
1 12 cos ,PV cW PV φ=             (1) 

 
where P1 and 1V  are the amplitudes of the sinusoidal pressure and the volume flow, and cφ  
is the phase by which the volume flow leads the pressure. The volume flow amplitude is 
related to the instantaneous volume amplitude V1 at the cold end by 
 

.2 11 fVV π=             (2) 
 
The PV power is then given by 
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where P0 is the average pressure and f is the frequency.  The term in parentheses is the 
relative pressure amplitude, which is usually not varied.  From this equation we see that by 
increasing the frequency the PV power can be increased for fixed size of the refrigerator 
and operating conditions. However, simply increasing the frequency of a cryocooler 
designed for operating at 60 Hz would lead to higher losses because of ineffective heat 
transfer in the regenerator. We have shown that to efficiently operate the cryocooler at 
higher frequencies it is necessary to increase the average pressure and to use a regenerator 
matrix with a smaller hydraulic diameter [3,4]. High frequency operation of the cryocooler 
would also reduce the required regenerator volume. According to equation 3, for a certain 
PV power, increasing the frequency reduces the volume flow at the cold end for a fixed 
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FIGURE 1. 120 Hz cryocooler showing various components. A U.S quarter (24.3 mm) is shown for size 
comparison 

TABLE 1. Component geometry in pulse tube cryocooler. (All components stainless steel (SS).  

 Length (mm) Outside Diameter 
(mm) 

Wall thickness (mm) 

Regenerator 30 9.525 0.254 
Pulse tube 30 4.7625 0.1524 

864 2.3724 0.508 Inertance Tube: Small dia. 
                    Large dia. 746 2.3724 0.3048 

 Wire Diameter (µm) Porosity Hydraulic 
Diameter (µm) 

635 Mesh (40 µm 
spacing) 

20.3 0.601 30.6 

Reservoir Volume 50 cm3

pressure ratio and phase cφ . (For efficient operation, P0 increases with frequency.) The 
pulse tube volume is generally chosen to be about three times the swept volume at the cold 
end. Reduction in swept volume due to high frequency operation of the cryocooler reduces 
the pulse tube volume. Hence, high frequency operation of the cryocooler reduces the 
volumes of the regenerator and the pulse tube for a given cooling power, which increases 
the power density and leads to faster cooldown. 
 
 
120 Hz PULSE TUBE CRYOCOOLER 
 

A pulse tube cryocooler was designed to operate at a frequency of 120 Hz with an 
average pressure of 3.5 MPa [4,5]. The flow at the cold end was made to be in phase with 
the pressure ( cφ  = 0). The dimensions of various components of the cryocooler are given in 
table 1. Figure 1 shows the assembled cryocooler with all the instrumentation. A no-load 
temperature of about 50 K was achieved with a pressure ratio of 1.23 at the cold end. For 
an average pressure of 3.5 MPa and a pressure ratio of 1.4 at the aftercooler (1.23 at the 
cold end) the net refrigeration power was 3.35 W at 80 K.  This cryocooler cooled from 
285 K to 80 K in 5.5 minutes [4,5], but the pressure ratio or input power were not closely 
monitored during the cooldown.  For the cooldown experiments reported here the pressure 
ratio at the cold end (measured at the pulse tube warm end) was held constant at 1.23 
during the entire cooldown process.  For comparison, one test was performed with the 
input power to the compressor held constant. To determine the effect of the cold-end  
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TABLE 3.  Experimental conditions and cooldown time with various capacities.  Tests 1-5 were for a 
constant pressure ratio of 1.23 at the warm end. 

Test Cold item Mass 
(g) 

Heat capacity 
ratio, Cr 

Cooldown time, 
285-80 K 

(s) 
1 M0 + heater 35.3 4.19 517 
2 M0 + heater + M1 77.0 8.89 1133 
3 M0 + heater + M2 119.2 13.66 1692 
4 M0 26.1 3.14 394 
5 M0 + M1 67.8 7.84 970 

6 (constant input 
power, 275 W) 

M0 + M1 67.8 7.84 585 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
mass on the cooling process, various copper masses were mounted at the cold end and the 
cooling times were recorded. The average heat capacities of the copper masses and other 
components are given in table 2. 
 
 
EXPERIMENTAL RESULTS 
 

Experiments were performed on the cryocooler for several cold-end masses given in 
table 3. For all the tests the average pressure was 3.5 MPa, the frequency was 120 Hz, and 
the pressure ratio was 1.23 at the cold end (measured at the warm end of the pulse tube), 
except for test 6 where the input power to the compressor was held constant at 275 W.  
Figure 2 is the plot of cooldown curves for tests 1 to 5 in table 3. The tests at constant 
pressure ratio were chosen to provide a constant cold-end acoustic power in order to 
simplify the comparison with analytical models. As shown in table 3 the cooldown time for 
test 6, which was performed with a constant compressor input power of 275 W, was 
significantly less than test 5 made with the same mass but with a constant pressure ratio.  
The 275 W is the steady-state input power required when the cold end is at 50 K with a 
pressure ratio of 1.23 at the cold end. The high input power is a result of the compressor 
operating far from resonance conditions at the 120 Hz frequency.  A constant input power 
would be more realistic for cooldown during actual applications.   

TABLE 2. Average heat capacities (80-285 K) of 
various masses at the regenerator cold end. 

Cold Item Mass 
(g) 

Average heat 
capacity 

(J/K) 
Built-in mass, M0 

(cold HX, flanges & 
thermometer) 

26.1 9.26 

Heater + screw & 
washer 

9.2 3.10 

Mass 1, M1 (Cu) 41.7 13.88 
Mass 2, M2 (Cu) 83.9 27.93 

Regenerator, (SS)  7.7 2.95 
 

FIGURE 2 Cooldown curves under various  
conditions 
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FIGURE 3. Schematic of a one-dimensional thermal model of the regenerator and the cold heat exchanger. 

 
ANALYSIS 
 
Analytical Model 
 

The experimental cold stage (consisting of the regenerator, cold heat exchanger, pulse 
tube, warm heat exchanger) was maintained in a vacuum (<0.1 Pa), which essentially 
eliminates convection as a means of heat transfer. The cold stage was wrapped with several 
layers of multi-layer insulation, which substantially reduces the heat radiation gain from 
ambient. The main sources of heat transfer to the cold end are enthalpy flow, heat 
conduction through the regenerator material, and heat conduction through the tube walls of 
the regenerator and the pulse tube. To simplify the analytical model, the enthalpy flow and 
heat conduction were assumed to be proportional to the temperature difference between the 
hot and cold end for cold-end temperatures between 80 and 285 K. An effective thermal 
conductivity is defined as 
 

keff = fck + kh.                 (4) 
 
The factor fc is the conductivity degradation factor accounting for packing of the screens 
[6], kh is the simulated conduction to account for enthalpy flow, and k is the thermal 
conductivity of the material. The density and specific heat are taken to be independent of 
temperature and equal to the average value between 80 and 285 K.  

The one-dimensional thermal model is illustrated in figure 3. Because of the high 
thermal conductivity of copper, the cold heat exchanger can be modeled as a uniform 
temperature thermal mass with a total heat capacity CM. The warm-end heat sink is 
assumed to be at a constant temperature T0 and the heat flows by the effective thermal 
conductivity given in eq. (4) through the regenerator, simulating conduction through a 
solid rod of the same solid cross-sectional area. If the temperature of the regenerator and 
the cold heat exchanger were initially at the heat sink temperature T0 and a step power q is 
applied (q < 0 for refrigeration) at the cold heat exchanger at t>0, the cold heat exchanger 
temperature T is given by [7,8], 

 
2

0
1

4sin( ) 1 exp( )
(2 sin 2 )

n

neff c n n n n

qL tT t T
k A

ξ
ξ ξ ξ τ

∞

=

⎡ ⎤
= + − −⎢ ⎥+⎣ ⎦

∑         (5)  

 
where Ac is the solid cross-sectional area, L is the regenerator length, and the time 
constants are 
 

2 2
n p eff nc L k=τ ρ ξ ,           (6) 

 
where ρ is the solid density, cp is the specific heat of the regenerator matrix and the 
eigenvalues nξ are determined by the positive solutions to the equation 
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where CM is the heat capacity of the cold-end mass and Cr is the heat capacity ratio 
between the cold-end mass and the regenerator mass. When CM approaches zero the result 
gives the intrinsic cooldown time when there is no cold-end mass. For the intrinsic case of 
zero cold-end mass we derived an alternative analytical model that gives the temperature as 
a function of both time and position x between the warm and cold ends. The result is given 
by 
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where the constants are, 
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Equation (8) is similar to the equation derived by Reese and Tucker [9] for use in 
measuring specific heats, except for a small error in their published equation. Note that in 
our case q<0. The analytical equations rely on the use of the effective thermal conductivity 
given by eq. (4) that takes into account the enthalpy flow in the regenerator.  We rely on a 
numerical model described in next section to calculate this enthalpy flow loss. 
 
Numerical Analysis 
 

The NIST numerical model, known as REGEN3.2 and based on finite difference 
equations for the conservation equations, was used for the calculations discussed here. In 
REGEN3.2 the mass flow at the cold end and its phase with respect to the pressure at the 
cold end are input parameters, along with the desired average pressure, pressure ratio, 
frequency, and the geometrical parameters of the regenerator matrix.  The mass flow at the 
warm end (both magnitude and phase) is calculated by the model.  Losses associated with 
regenerator ineffectiveness, conduction through the matrix, and pressure drop are 
calculated by the model.  Conduction loss through the tube containing the screen matrix is 
calculated separately. A loss associated with the expansion process (pulse tube) was taken 
to be 20 % of the gross refrigeration power.  

The enthalpy flow loss in the regenerator is not linear with the temperature difference 
between the two ends of the regenerator. The enthalpy flow tends to increase rather rapidly 
as the cold end cools below about 100 K, which for a constant input PV power causes the 
net refrigeration power to decrease rapidly below 100 K. To estimate the net cooling power 
as a function of cold end temperature, REGEN runs were performed with the dimensions 
of the regenerator given in table 1 with varying cold end temperatures. The average 
pressure of 3.5 MPa, a pressure ratio of 1.23 at the cold end and a frequency of 120 Hz 
were taken to match with the experimental data. The flow at the cold end was made to be 
in phase with the pressure ( cφ  = 0) for all the runs. Since the mass flow is a function of 
temperature, the mass flow for various runs was adjusted from the mass flow value of 
1.9 g/s at 80 K. The warm end temperature was taken to be 300 K.  
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FIGURE 4. Output from REGEN3.2 calculations 
compared with experimental results. 

FIGURE 5. Measured and calculated cooldown 
times for various ratios of cold-end heat capacity 
to regenerator heat capacity 

Heat conduction loss through the pulse tube and regenerator walls as well as a 
radiation heat loss of about 0.06 W were subtracted from the net cooling power calculated 
by REGEN3.2. Figure 4 is the plot of the adjusted gross refrigeration power (gross minus 
the 20 % pulse tube loss), net refrigeration power, input PV power and heat loss as a 
function of temperature. The heat loss takes into account the enthalpy flow as well as the 
conduction and radiation losses. The adjusted gross refrigeration power was about 8.17 W. 
The heat loss was approximated by a straight line between 300 K and 80 K, and the 
effective thermal conductance was found to be 0.014 W/K. The equivalent conductivity 
due to enthalpy flow in eq. (4) was adjusted to yield this effective thermal conductance.  
The appropriate enthalpy factor was found to be 27.10=kfk ch , with fc = 0.13, and k = 
11.32 W/(m⋅K). This effective thermal conductivity from equation (4) was then used in the 
analytical equations for the cooldown time. 
 
 
COMPARISON OF EXPERIMENTAL AND CALCULATED RESULTS 
 

Figure 4 also shows the measured net refrigeration power as compared with that 
calculated by REGEN3.2. We see that the experimental values in the range between 80 and 
100 K are close to, but slightly less than, the calculated values.  That could indicate the 
pulse tube ineffectiveness may be slightly larger than 20 %, thereby reducing the adjusted 
gross refrigeration power.  If we maintain the enthalpy factor at 10.27 and use a single 
adjusted gross refrigeration power q (equal to ,gross adjQ in figure 4) in eq. (5) to give the best 
agreement between the calculated cooldown times and the experimental results, we find 
q to be -6.63 W (minus indicates refrigeration) instead of -8.17 W from REGEN3.2. The 
dashed curve in figure 5 represents the cooldown times calculated from eq. (5) with q = -
6.63 W.  When q = -6.63 W is used in eq. (5) or (8) for the intrinsic cooldown time from 
285 K to 80 K a value of  31.5 s is obtained. The experimental data are also shown in 
Figure 5 for comparison. The solid line is a least squares linear fit to the experimental data. 
That fit extrapolates to a cooldown time from 285 K to 80 K of 29.7 ± 59.7 s for zero cold-
end mass. In practice a small but finite cold-end mass is required to accommodate a heat 
exchanger, a small thermometer, and some device to be cooled.  Heat capacity ratios Cr 
less than 1.0 would be reasonable in some applications.  The major uncertainty in the 
experimental results is that of the built-in cold-end mass, M0. Small variations in the 
pressure ratio during cooldown result in an uncertainty for the experimental cooldown 
times of about 5 %. 
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CONCLUSION 
 

We have shown that increasing the frequency and average pressure in an optimized 
pulse tube cryocooler leads to shorter cooldown times. A pulse tube cryocooler with a 
significant cold-end mass operating at 120 Hz and 3.5 MPa average pressure was shown to 
cool from 285 K to 80 K in 5.5 minutes.  Cooldown times for various cold-end masses 
attached to this cryocooler were measured under the condition of a constant cold end 
pressure ratio of 1.23.  A linear extrapolation of these times to zero cold-end mass showed 
a cooldown time to 80 K of about 29.7 ± 59.7 s, which agrees within experimental error 
with the value of 31.5 s found by the use of an analytical model. 
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