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ABSTRACT 
 

We present an update to a program simply titled the Cryogenic Materials 
Property Database.  The primary goal for this program is to compile, critically 
evaluate, and provide old and new properties data in a more usable predictive 
equation form focusing on primary properties such as thermal conductivity, 
thermal expansion, specific heat, and Young’s modulus for a temperature range 
of 4 to 300 K.  To facilitate the widest possible access to this data we have 
established a website at www.cryogenics.nist.gov to provide this information.  
In this paper we present an updated list of the materials and properties currently 
in the database.   

 
 
 
INTRODUCTION 
 
Recent extensive efforts in a wide array of fields such as medicine, space exploration, weather 
forecasting, and many others have led to a growth in the use of standard and exotic materials 
for low temperature (cryogenic) applications.  Cryogenics in the early 1950’s led to much 
interest in material properties at low temperatures. While important fundamental theory and 
measurements of low temperature material properties were performed throughout the 1950’s, 
60’s and well into the 70’s much of this work has become fragmented and dispersed as many 
of these publications are out of print and difficult to find if available at all. More importantly 
much of this work is in a form that simply is incommensurate for use with computers as the 
graphs and tables formerly used are difficult to accurately determine and use.  Even new 
publications present material primarily in graphs and occasionally tables which necessitates 
transcription into a user-friendly digital/numeric form that can be incorporated into existing 
computer codes and models. 

Several years ago NIST began a program to gather cryogenic material property data and 
make it available in a form that is useful to scientists and engineers. We established an 
approach to use a few simple types of polynomial or logarithmic polynomial equations to 
determine the coefficients for different materials and their properties [1] over a fairly wide 
temperature range. This allows the end user the flexibility to use the equations in a manner 
they so choose by incorporating into commercial software or code of their own to predict 
material properties.  Thus integrated and average values can easily be determined from the 
equations whether explicitly or numerically from data developed from the equations.  The 
equations are meant to provide best reasonable accurate values rather than any physical 
insight into the property.  As the equations are based upon original data they are not meant to 
provide ‘standard’ values unless based upon standard reference materials (SRM’s) as stated.   
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PREDICTIVE EQUATIONS 
 
In the previous work [1] we presented the general forms for the fit equations employed for 
Thermal Conductivity, Specific Heat, Linear Thermal Expansion, Coefficient of Thermal 
Expansion, and Young’s Modulus.  Below we summarize these again.  We note that with all 
generalizations there may and probably will be exceptions from time to time.  Thus, we 
reserve the right to employ variances in equation form(s) as appropriate to best present 
properties for any given material now and in the future. 

.   
Thermal Conductivity, Specific Heat, and Expansion Coefficient 
 
For most materials the general form of the equation for thermal conductivity, k, is 
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where a, b ,  c ,  d, e, f, g, h, and i are the fitted coefficients, and T is the temperature with units of 
W/(m-K) for thermal conductivity, J/(kg-K) for specific heat, and 1/K for expansion 
coefficient (CTE).  These are common logarithms (ie. base 10) and we note that all the digits 
provided for the coefficients should be used as any truncation can lead to significant errors.   
For specific heat and coefficient of expansion simply substitute ‘Cp’ or ‘CTE’ for ‘k’ in 
equations 1 and 2.  It was determined that the eight terms were needed in order to fit the data 
over the large temperature range.  Equation 1 of course solves as 
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While we have made every effort to maintain consistency in employing equation 1 for 

thermal conductivity, oxygen free copper is the exception thus far.  We determined the best 
representation for the thermal conductivity for OFHC copper takes the form  
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where coefficients are as before. Equation 3 is the thermal conductivity for an average 
sample of oxygen free copper with coefficients as before which solves as 

It should be noted that thermal conductivity for oxygen free copper can vary widely 
depending upon the residual resistivity ratio, RRR, and this equation should be used with 
caution.  
 
Thermal Expansion and Young’s Modulus 
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Thermal expansion is reported in the literature mostly as the integrated linear thermal 
expansion as a percent change in length from an original length usually measured at 293K 
which we refer to as Linear Thermal Expansion is expressed in general form as,   
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which has units of m/m otherwise known as unitless and the same coefficients.  The general 
form for Young’s modulus of elasticity, E, is similarly expressed as, 
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which has units of GPa and fitted coefficients are the same again. 
 
 
MATERIALS 
 
Our database now extends from the original dozen to over 40 materials as listed in Table 1 
which also shows the status of properties available for each material in the database.  We 
continue to provide many of the most commonly used in cryogenics as well as many 
previously not so commonly used.  For all materials we provide the appropriate selection and 
critical screening for best representation and fits for the data presented while we continue to 
focus on the original 5 properties; Thermal Conductivity, Specific Heat, Linear Thermal 
Expansion, Coefficient of Thermal Expansion, and Young’s Modulus.  One of the most 
important aspects for this program is to critically evaluate and provide proper reference source 
documentation for the data [1-79].  We provide a succinct cross-referenced list for all general 
materials and properties references in Table 2.  We note that although this is not necessarily 
the most user-friendly approach, we refer the reader to our website for a comprehensive and 
user-friendly version (too long to include in this paper) which allows easy access and location 
of individual materials and properties source references.  20 recently added high heat capacity 
materials are shown in Figure 1.  Table 3 lists the properties available for these materials 
(employed in NIST Regen3.2) [2,3] which are often used in regenerators.  Figure 1 shows the 
more useful volumetric specific heat (ρCp) for these materials which have significant peaks at 
low temperatures resulting in unsatisfactory fits for Equations 1 and 2.  Therefore for the 
immediate future we are providing the data for these materials as part of an excel spreadsheet 
file 
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Table 1  Alphabetical list of updated materials currently in database (references 1, 4-47). 

General Materials 
 

Thermal 
Conductivity - k, 

W/(m-K) 

Specific Heat 
- Cp, J/(kg-K) 

Linear Thermal 
Expansion -      
(LT-L293)/L293, 

unitless ie. m/m 

Coefficient of  
Thermal 

Expansion - 
dL(T)/(LdT),  1/K or 

m/(m-K) 

 
Modulus of 

Elasticity – E, 
GPa 

Aluminum 1100 X X    
Aluminum 1100 - F X     
Aluminum 3003-F  X X X   
Aluminum 5083-O  X X X  X 
Aluminum 6061-T6  X X   X 
Aluminum 6063-T5  X     
Apiezon N X X    
Apiezon T  X    
Balsa X     
Beechwood/phenolic X  X   
Beryllium X X in Process X   
Beryllium Copper X  X  X 
Brass X  X   
Copper (OFHC) UNS 101 X X  X X 
Copper (ETP)  X     
Copper (Pure)  X in Process X in Process  X in Process  
Fiberglass Epoxy G-10  X  X   
Glass fabric/polyester G-
11 X     
Glass mat/epoxy tbd tbd tbd tbd  
Inconel 718  X  X   
Indium X X  X  
Invar (Fe-36Ni) X X X  X 
Kevlar-49 X    X 
Lead X X    
Molybdenum X  X   
Niobium Titanium (NbTi)   X   
Nickel Steel (Fe-2.5Ni) X X X  X 
Nickel Steel (Fe-3.5Ni) X X X  X 
Nickel Steel (Fe-5.0Ni) X X X  X 
Nickel Steel (Fe-9.0Ni) X X X  X 
Perlite X     
Phosphor Bronze  X in Process  X in Process  
Platinum X X    
Polyamide (Nylon) X X X   
Polyethylene 
Terephthalate (Mylar) X     
Polyester X in Process  X in Process   
Polyimide (Kapton) X X    
Polystyrene X X X   
Polyurethane X X X   
Polyvinyl Chloride X X X   
Sapphire X in Process  X in Process X in Process  
Silicon X in Process  X in Process X in Process  
Stainless Steel 304 X X X  X 
Stainless Steel 304L X X X   
Stainless Steel 310 X X X  X 
Stainless Steel 316 X X X  X 
Stainless Steel 304-
SRM735 X     
Stycast 2850 FT   X in Process   
Teflon-PTFE X X X   
Ti-6Al-4V X X X   

 

 



 

*Contribution of NIST, not subject to copywright in the U.S. 5 

Temperature (K)
1 10 100

V
ol

um
et

ric
 H

ea
t C

ap
ac

ity
, ρ

 C
p 

, [
J/

(c
m

3 -K
)]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lead

Gd-Rh

Gd0.6-Er0.4-Rh

Er3-Ni

Er-NiEr-Ni2

Er-Al2

Er0.2-Dy0.8-Ni2

Nd

Er0.9-Yb0.1-Ni

Er3-Co

Er0.6-Pr0.4

Ho-Cu2

Er-Ni0.9-Co0.1

Ho2-Al

Er-Ag0.9-Al0.1

Dy-Sb

Ho-Sb

Gd-Sb

GdAlO3 (GAP)

Gd2O2S (GOS)

Stainless Steel

 
                 Figure 1  Regenerator materials in database and Regen3.2 (references [45-78]).    

 

Table 2  Cross-references for materials in database [5-47] (most comprehensive at           
www.cryogenics.nist.gov). 

Material Props. Refs.  Material Props. Refs. 
Aluminum 1100 K-5  Nickel Steel  (Fe-2.25Ni) Y-5, Exp.-5, Cp-5, K-5 
Aluminum 3003-F K-5, Cp-5, Exp-4  Nickel Steel  (Fe-3.5Ni) Y-5, Exp.-5, Cp-5, K-5 
Aluminum 5083-0 K-5, Cp-5, Exp-6, E-5  Nickel Steel  (Fe-5.0Ni) Y-5, Exp.-5, Cp-5, K-5 
Aluminum 6061-T6 K-7, CP-5, Exp-5, E-5  Nickel Steel  (Fe-9.0Ni) Y-5, Exp.-5, Cp-5, K-5 
Aluminum 6063-T5 K-5  Nickel Steel K-5, Cp-5, Exp-5 
Apiezon N Cp-13,14,15,16, K-31  Nylon Exp.- 6,7,12, K-7, 11 
Apiezon T Cp-31  Perlite Cp-5 
Balsa 

K-5 
 PET/Mylar (polyethylene 

terephthalate) K-23 
Beechwood-Phenolic Exp-5  Phosphor Bronze Exp.-24, Cp-24 
Beryllium  Exp-9, Cp-8,11, K-10  Platinum K-11, Cp-11 
Beryllium-Copper K-7, Exp-2, Y-18  Polyamide (Nylon) K-7, Exp-12, Cp-U 
Brass K-10, 33, Exp-32  Polyester Exp.-5, K-5 
Copper K-22, Cp-22, 11, 7, Exp-22, Y-

22 
 Polyiminde (Kapton) 

K-38  
Copper_ ETP K-34,35  Polystyrene Exp.-5, Cp-5, K-5 
Copper_Pure Exp.-6, K-5, Cp-11  Polyurethane Exp.-5, Cp-5, K-5 
G-10 Fiberglass Epoxy Exp-5, 12, K-17,29,36, Cp-U  Polyvinyl Chloride Exp.-5, Cp-5, K-5 
Glass fabric/polyester Tbd  Sapphire Exp.-39,40, K-U 
Glass mat/epoxy Tbd 

 
 Silicon 

Exp.-9, 41,  
Inconel 718 

K-34, Exp-34 
 Stainless Steel 304 K-5, 42, Cp-5,42,43, Exp-5,6, 

Y-5 
Indium K-18, Exp-18, Cp-18  Stainless Steel 304L K-5, Cp-5, Exp-5 
Invar (Fe-36Ni) K-5, Exp-5, Cp-5, Y-5  Stainless Steel 310 K-5, Cp-5, Exp-6, Y-5 
Kevlar K-19,20, Y-37  Stainless Steel 316 K-5, Cp-5, Exp-6, Y-5 
Lead K-18, Cp-18  Stainless Steel 735 K-44,45 
Molybdenum K-10,21, Exp-9  Stycast - 2850FT Exp.-46 
NbTi Exp-12  Teflon Exp.-6, K-7, Cp-7 
   Titanium 6Al-4V Exp.-9, K-47, Cp-47 
k:  Thermal Conductivity,   Cp:  Specific Heat,  Exp.:  Thermal Expansion and CTE,  Y:  Young’s Modulus 
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Table 3  Updated regenerator materials in 
database and Regen3.2 (references [2,3, 48-81]). 

Regenerator 
Materials 

 

Thermal 
Conductivity - k, 

W/(m-K) 

Volume Specific 
Heat - ρCp, 
J/(cm3-K) 

GdRh   X in Process 
ErNi X in Process X in Process 
ErNi2 X in Process X in Process 
ErAl2  X in Process 
Er0.2Dy0.8Ni2  X in Process 
Er0.9Yb0.1Ni  X in Process 
Er3Co  X in Process 
ErNi0.9Co0.1 X in Process X in Process 
Gd0.6Er0.4Rh  X in Process 
Er3Ni  X in Process 
Nd  X in Process 
Er0.6Pr0.4  X in Process 
HoCu2  X in Process 
ErAg0.9Al0.1  X in Process 
Ho2Al  X in Process 
HoSb  X in Process 
DySb  X in Process 
GdSb  X in Process 
GAP_GdAlO3  X in Process 
GOS_Gd2O2S  X in Process 

 

NEW FEATURES IN DATABASE 
 
There are many new features for the 
Cryogenic Material Properties Database on 
our website; www.cryogenics.nist.gov.  
These include a revised visual front end 
which provides both the fit equations as 
well as the appropriate solutions to aid in 
proper use.  Often accuracies are difficult to 
ascertain from the original literature so we 
provide the accuracy for the fits of 
equations to original data sources.  These 
range from + 1% to + 5% and we expect 
that total accuracies for many materials are 
within a few to 10 %.  While these are not 
intended as overall data accuracies and 
should be used with caution they certainly 
represent reasonable values for engineering 
and scientific use.  We encourage users to 
review the references documented 
individually for each material and property 
and to asses for themselves what accuracy 
they deem appropriate.  The references may 
be viewed by clicking the button labeled 

“References for this Material”.  Additionally, a representative plot for each material property 
(similar to Figure 1 but for a single material of interest) of a given material has been added 
which can be viewed by clicking the appropriately labeled button. 
 
 
FUTURE PLANS 
 

We continue to receive positive responses to the Cryogenic Material Properties Database 
at www.cryogenics.nist.gov and plan to continually update with new materials and properties.  
We are in process of expanding the useful temperature range of the predictive equations to 
about 350 K.  Check our web site often for updated information.   
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