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ABSTRACT 
 

The NIST numerical software, REGEN3.3, which incorporates both He-4 and He-3 
properties, was used to calculate the losses and second law efficiencies of 4 K regenerators 
operating at 30 Hz.  Operating parameters, such as average pressure, pressure ratio, and 
warm-end temperature were varied to investigate the effect of non-ideal gas properties.  
Regenerator parameters such as matrix material and shape, hydraulic diameter, and 
regenerator geometry were varied to investigate losses due to non-ideal regenerator 
behavior.  The results show that He-3 can increase the regenerator efficiency by a factor of 
at least two compared to a regenerator optimized for He-4.  A layered regenerator of 
gadolinium oxysulfate (GOS) at the cold end and ErPr at the warm end is the best of many 
material combinations.  A regenerator with parallel holes of about 20 % porosity showed 
only slight improvement over one with packed spheres.  The regenerator warm-end 
temperature has little effect on its efficiency for temperatures below 35 K and pressures of 
1.0 MPa and above.  An optimized 4 K He-3 regenerator uses layered GOS and ErPr with 
the warm end at about 30 K and an average pressure of about 1.0 MPa.  With those 
optimum conditions a reduced regenerator loss of 0.36 and a regenerator second law 
efficiency of 25 % are achieved. 
 
KEYWORDS:  Cryocoolers, cryogenics, efficiency, Gifford-McMahon, helium-3, helium-
4, numerical analysis, pulse tubes, real gas, refrigeration, regenerators, Stirling, theory 
 
INTRODUCTION 
 

The application of low temperature superconducting (LTS) systems, such as magnetic 
resonance imaging (MRI) systems utilizing superconducting magnets or electronic devices 
                                                 
* Contribution of NIST, not subject to copyright in the US. 
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utilizing Josephson junctions, requires the use of 4 K cryocoolers.  Typically these 
cryocoolers have been either Gifford-McMahon (GM) cryocoolers or GM-type pulse tube 
cryocoolers that operate at frequencies of about 1 Hz [1].  The efficiencies of these 
cryocoolers are in the range of 0.5 to 1.0 % of Carnot, whereas 80 K cryocoolers often 
achieve efficiencies of at least 15 % of Carnot.  The low efficiencies of 4 K cryocoolers 
leads to large compressors with large input powers.  The low operating frequency of the 
GM and GM-type pulse tube also leads to large temperature oscillations at the cold end at 
the operating frequency of the cryocooler.  The amplitude of the temperature oscillation 
decreases as the cryocooler operating frequency is increased.  Higher frequencies also 
allow the use of Stirling cryocoolers or Stirling-type pulse tube cryocoolers, which have 
much higher efficiencies in converting electrical power to PV power in the pressure 
oscillator.  These frequencies are typically in the range of 30 to 60 Hz.  However, these 
higher frequencies generally lead to greater losses in the regenerator unless careful 
optimization is carried out.  Recent work with a 4 K GM-type pulse tube [2, 3] and a 
Stirling-type pulse tube cryocooler [4] has shown that the use of 3He instead of 4He 
increased the cooling power for the same power input.  Previous modeling efforts by us [5, 
6] have shown that the loss associated with real gas effects in the regenerator can be 
significantly reduced by using 3He at a relatively low average pressure of 0.5 to 1.0 MPa 
instead of 4He at the normal pressure of 1.5 to 2.5 MPa.  A layered regenerator matrix of 
gadolinium oxysulfate (GOS) at the cold end and Er0.5Pr0.5 at the warm end was found to 
minimize the losses in a 4 K regenerator with the warm end at 20 K [6].  In this paper we 
model the effects of many parameters on the performance of 4 K regenerators to arrive at 
an optimized set of parameters that maximizes the regenerator efficiency. 
 
 
NUMERICAL MODEL 
 
Helium-3 properties 
 
 The Debye equation used to express the temperature dependence of the specific heat 
of solids was used by Huang et al. [7, 8] to fit published experimental data for the 
thermodynamic properties of 3He for temperatures from 0.01 K to 1500 K and pressures up 
to 20 MPa.  Deviations between this Debye equation of state and the reference 
experimental data were within ±1 %.  Because there are no experimental data for the 
transport properties of 3He in the gas phase, a quantum version of the principle of 
corresponding states was used to calculate the viscosity, thermal conductivity, and surface 
tension of 3He in the gas phase [5].  The equations for both the thermodynamic and 
transport properties of  3He were incorporated into the numerical model discussed below. 
 
NIST Numerical Model REGEN3.3 
 

The results presented in this paper were obtained with the new version 3.3 of the NIST 
numerical regenerator model REGEN3.3 that includes an option to select 4He or 3He as the 
working fluid as well as the ideal gas version of either gas.  The boundary conditions for 
the older versions, 3.1 or 3.2 [9] required the mass flow to be given at both ends of the 
regenerator. In the new version the mass flow and pressure at the cold end are inputs.  This 
avoids an iteration to guess the mass flow at the warm end to obtain the pressure ratio and 
phase relative to the cold end mass flow. The latter usually determine the desired operating 
point for the model.  Other changes and comparisons with the older version were discussed 
previously [5].  The excellent convergence of the new version at 4 K made the calculations 

1582



for this work straightforward.  Running times with a desktop computer were typically about 
20 minutes for a 4 K regenerator. 

 
 

CRYOCOOLER THERMODYNAMICS 
 
Regenerative Cryocooler Losses 
 

Only the last-stage regenerator, which reaches 4 K, is considered in the analysis 
presented here.  The time-averaged acoustic power hVP 〉〈  that drives this stage enters the 
regenerator at the hot end at a temperature of Th.  It is defined by the reversible isothermal 
power input given by the time-averaged Gibbs free energy flow hG〉〈 .  The purpose of the 
regenerator is to deliver to the cold end as much of this acoustic power as possible with a 
minimum of losses.  For Stirling or Gifford-McMahon cryocoolers the displacer at the cold 
end produces a time-averaged expansion power exp〉〈W that leads to a net refrigeration 
power given by 
 

 ,exp radcondregnet QQHWQ −−〉〈−〉〈=  (1) 
 

where regH 〉〈 is the time-averaged enthalpy flow in the regenerator, with positive numbers 

referring to flow from the warm end to the cold end, condQ  is the conduction heat leak 
through the regenerator, and radQ  is the radiative heat leak to the cold end, which is 
ignored in this work.  The expansion power is related to the isothermal reversible power or 
acoustic power at the cold end cVP 〉〈  by 
 

 ,exp ptcptrev QVPQWW −〉〈=−〉〈=〉〈  (2) 
 

where ptQ  is the loss associated with an imperfect pulse tube or any irreversible expansion 
process at the cold end.  The introduction of acoustic power in equation (2) makes it valid 
for pulse tube cryocoolers as well as for Stirling and Gifford-McMahon cryocoolers. 

The loss associated with the enthalpy flow regH 〉〈  in the regenerator can be divided 
into two parts, as given by 
 

 ,regPreg QHH +〉〈=〉〈  (3) 
 

where PH 〉〈  is the enthalpy flow associated with the enthalpy pressure dependence (real 
gas effect) and regQ  is the thermal loss associated with enthalpy flow caused by imperfect 
heat transfer and limited heat capacity in the regenerator (regenerator ineffectiveness).  
This separation allows us to determine the intrinsic loss associated with use of a real gas 
and how that differs between 4He and 3He.  Both gas properties and regenerator properties 
affect regQ .  Combining equations (1), (2), and (3) gives us 
 

 .ptcondregPcnet QQQHVPQ −−−〉〈−〉〈=  (4) 
 

We can define the gross refrigeration power as that associated with a perfect regenerator 
and a perfect expansion process, which then gives [5] 
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FIGURE 1.  Diagram showing energy flows and losses in a regenerator and pulse tube. 
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Equations (4) and (5) can be combined to give 
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The acoustic power anywhere along the regenerator with perfect heat transfer and no 
pressure drop varies as the specific volume.  In the presence of a pressure drop, the cold-
end acoustic power is related to the hot-end acoustic power by 
 

 ( )( ),hhhhccc VPVPTZTZVP 〉∆〈−〉〈=〉〈  (7) 
 

where Zc is the compressibility factor at the cold end, Zh is the compressibility factor at the 
hot end, and hVP 〉∆〈  is the additional acoustic power required at the hot end due to 
pressure drop in the regenerator.  By substituting equation (7) into equation (6) we can 
express the net refrigeration power as 
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By writing the net refrigeration power in this manner, we have separated out the terms that 
are functions only of the gas properties from those that also depend on the hardware.  The 
first factor on the right hand side of the equation is the acoustic power input at the hot end 
of the regenerator.  The second factor shows the effect of pressure drop in the regenerator 
and is both hardware and gas dependent.  The third factor shows the reduction in acoustic 
power due to temperature change and real-gas behavior associated with compressibility.  
The fourth factor shows the effect of real-gas enthalpy flow.  The terms in the last set of 
brackets are both hardware and gas dependent. 

FIGURE 1 shows a schematic of the energy flows and losses associated with the last 
stage of a regenerative cryocooler as represented by equation (8).  The relative magnitudes 
shown for each of the acoustic power flows and the losses are typical of a regenerative 
cryocooler at 4 K.  As this figure shows, the losses are quite large, and the remaining net 
refrigeration power is quite small compared to the input power. 
 
Coefficient of performance and efficiency 
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FIGURE 2. Ratio of real gas COP to ideal gas COP for last stage of a perfect regenerative cryocooler. 

 
The coefficient of performance of the last stage regenerator is given by 
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For an ideal gas and a perfect regenerator, the ideal COP for this last-stage regenerator is 
given by (Tc/Th), where we assume that the reversible expansion work at the cold end is not 
being fed back to the hot end of this regenerator.  Thus, the thermodynamic second-law 
efficiency of the last stage is given by 
 

 ( )COP.ch TT=η  (10) 
 

Combining equations (8), (9), and (10) gives the second law efficiency of the last stage as 
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Equation (11) also expresses the ratio of the net entropy input at the cold end cnet TQ /  to 
the time-averaged entropy flow at the warm end of the regenerator hS〉〈 .  In the work 
presented here we assume the pulse tube loss is zero, so the efficiency values are those of 
only the regenerator. 
 
 
REAL GAS EFFECTS 
 

When only the real gas effects are taken into account, the net refrigeration power 
equals the gross refrigeration power, as given by equation (5).  For a perfect regenerator the 
lost acoustic power due to pressure drop in equation (7) is zero.  The efficiency for a 
perfect last stage becomes 
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The enthalpy flow associated with the real gas effects can be found by using a first law 
energy balance on the regenerator with perfect isothermal heat exchangers on each end 
along with the condition that the hot-blow stream must be warmer than the cold-blow 
stream.  Details of this calculation have been discussed previously [5].  FIGURE 2 
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Working fluid 4He, 3He Material 
properties Regenerator Matrix 9 materials + layers 

Vrg/VE L (mm) Dh (µm) Config. ng Geometry 
3 - 20 10 -50 25 - 60 Spheres, holes 0.1 – 0.7 

P0 (MPa) Pr f (Hz) Th (K) φc (deg.) Operating 
conditions 0.3 -1.5 1.3 - 2 1 - 30 20 - 60 -45 to +30 

compares the efficiency given by equation (12) for 4He and 3He working fluids. This figure 
shows that for temperatures below about 7 K 3He gives a much higher gross efficiency than 
that given by 4He.  This figure also shows that for 3He a reduction of the average pressure 
to about 0.5 MPa significantly increases the efficiency, whereas the lower pressure actually 
decreases the efficiency slightly at 4 K for 4He. 
 
 
PARAMETERS AFFECTING REGENERATOR PERFORMANCE 
 

TABLE 1 lists the many parameters that can affect regenerator performance.  The 
real-gas effects are influenced by the working fluid and by the operating conditions.  
Losses associated with a non-perfect regenerator are affected by the matrix material, 
geometry, and operating conditions.  In TABLE 1, Vrg is the volume of gas in the 
regenerator, VE is the swept volume of gas at the regenerator cold end, L is the regenerator 
length, Dh is the hydraulic diameter of the matrix, ng is the porosity, P0 is the average 
pressure, Pr is the pressure ratio, f is the frequency, Th is the hot-end temperature, and φc is 
the phase by which the mass flow at the cold end leads the pressure at the cold end.  In our 
previous work and in this work, all modeling included both 4He and 3He while varying the 
other parameters.  We have shown previously that the optimum ratio Vrg/VE is in the range 
of about 7 to 10 for a wide range of pressures, pressure ratios, frequencies, and lengths, but 
the effect of Th and regenerator material on this parameter was not investigated [5].  Our 
previous work focused primarily on a fictitious layered regenerator material called Mix 1 in 
REGEN3.3 that has the volumetric heat capacity given by a series of several real materials, 
where the material with the highest volumetric heat capacity at any given temperature is 
used.  The materials in Mix 1 are Er0.9Yb0.1Ni (9 K), ErAl2 (12 K), ErDy0.8Ni0.2 (16 K), 
Er0.6Pr0.5 (30 K), and stainless steel, where the temperatures refer to the temperature of the 
peak heat capacity.  REGEN3.3 includes the relatively new regenerator material known as 
GOS, gadolinium oxysulfate [10], which has a peak at 5.2 K as well as the option to layer 
any combination of 30 materials in the database while using the maximum volumetric heat 
capacity or using layers at specified locations.  For Th = 20 K and P0 = 0.5 MPa we showed 
that the material combination of GOS + Er0.5Pr0.5 gave a lower loss and higher efficiency 
than any other material combination tested.  In this work we examine the effect of material 
at higher values of Th and P0.  We also show that the phase angle φc has a strong effect on 
the regenerator performance.  All the parameters are varied in a way to arrive at an 
optimum set of conditions for a 4 K regenerator using 3He as the working fluid. 
 
 
MODELING RESULTS 
 
Optimum Regenerator Volume and Effect of Frequency, Pressure, and Material 

 
FIGURE 3 shows how the reduced regenerator loss varies with reduced regenerator 

TABLE 1.  Parameters affecting regenerator performance and the range of values studied for each. 
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FIGURE 3.  Reduced regenerator loss at 30 Hz. FIGURE 4. Frequency effect on regenerator loss.

 
FIGURE 5. Regenerator loss for GOS+Er0.5Pr0.5. FIGURE 6. Regenerator second law efficiency.

gas volume for 4He and 3He for three different pressure ratios at a frequency of 30 Hz.  
FIGURE 4 shows similar results, but for frequencies of 1 Hz and 30 Hz.  For reduced 
volume ratios between 7 and 10, the higher frequency leads to an increase in the reduced 
loss for the case of 4He, but frequency has little effect on the loss for 3He.  For reduced 
volume ratios greater than about 10, the phase angle between the flow and pressure at the 
warm end becomes quite large, which leads to higher losses in the higher temperature 
regenerators and a large swept volume in the compressor for a given acoustic power.  
These phase angles are given by the numbers next to each data point in both figures.  The 
maximum allowable reduced regenerator loss would be 1.0 if the compliance tube (pulse 
tube) had no losses (a figure of merit of 1.0).  The pulse tube figure of merit is defined as 
the ratio of enthalpy flow to acoustic power flow in the pulse tube.  When pulse tube losses 
are taken into account, the net refrigeration power goes to zero when the reduced 
regenerator loss equals the pulse tube figure of merit.  Although this work focuses on losses 
in the regenerator, typical pulse tube figures of merit are around 0.8, which would be the 
practical value for the maximum reduced regenerator loss.  For 4 K regenerators we found 
previously that as long as the volume ratio Vrg/VE is in the range of 6 to 10, then area and 
length have little effect for length for lengths between about 12 mm and 40 mm [6].  All the 
results discussed here are for a length of 30 mm. 

FIGURE 5 shows that the reduced regenerator loss decreases when Mix 1 is replaced 
with GOS + Er0.5Pr0.5 for both 0.5 MPa and 1.0 MPa average pressures, but that the 
optimum value for Vrg/VE remains in the range of 7 to 10 for 4He but shifts to about 5 to 8 
for 3He.  The corresponding overall regenerator efficiency (Th/Tc)COP is shown in 
FIGURE 6. 
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FIGURE 7.  Effect of hot temperature and average pressure on regenerator second-law efficiency. 

 
FIGURE 8. Regenerator efficiency for spheres of various materials by use of 4He and 3He. 

Effect of Hot Temperature and Average Pressure 
 

FIGURE 7 shows the effect of the hot temperature on the efficiency of the regenerator 
for a matrix of GOS + Er0.5Pr0.5 spheres and for the same matrix with 25 µm diameter holes 
of 20 % porosity.  For an average pressure of 1.0 MPa the efficiency decreases very little 
until the hot temperature exceeds about 35 K.  However, for 4He the low efficiency may 
result in zero net refrigeration when the pulse tube loss is taken into account.  The results 
shown in FIGURE 7 suggest that an optimum hot temperature would be about 30 K to 35 K 
with an optimum average pressure of 1.0 MPa.  Although a higher efficiency can be 
achieved with P0 = 0.5 MPa for 3He, a hot temperature of about 25 K or lower is required.  
The lower pressure would result in reduced efficiencies in the upper regenerator stages and 
require a pressure oscillator with a larger swept volume.  The use of parallel holes increases 
the efficiency some, as shown in FIGURE 7, but for hot temperatures of 30 K and above 
the increase is rather small or the efficiency even decreases. 

 
Effect of Matrix Material at Th = 30 K and P0 = 1.0 MPa 
 

The layered combination of GOS + Er0.5Pr0.5 was found previously to give the highest 
regenerator efficiency out of eight other combinations of matrix materials, including that of 
GOS + HoCu2 + Er0.5Pr0.5.  Those comparisons were for Th = 20 K and P0 = 0.5 MPa.  
FIGURE 8 shows a similar comparison of materials, but for Th = 30 K and P0 = 1.0 MPa.  
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FIGURE 9.  Regenerator average temperature 
 profile showing location of layer boundary. 

FIGURE 10.  Volumetric heat capacity of several
regenerator materials and helium gas. 

This comparison shows that at this higher temperature and higher pressure several material 
combinations yield about the same performance.  With these conditions the combination of 
HoCu2 + Er0.5Pr0.5 yields an efficiency very slightly higher than that of GOS + Er0.5Pr0.5, 
but the difference is very small.  FIGURE 9 shows the calculated temperature profiles 
when a matrix of GOS + Er0.5Pr0.5 is used.  The crossover temperature for the volumetric 
heat capacity of these two materials is 6.9 K, as shown in FIGURE 10, and the location of 
this crossover point in the regenerator is shown in FIGURE 9 for both 3He and 4He.  The 
location of this temperature in the regenerator then defines the boundary location between 
the two materials.  FIGURE 10 shows the volumetric heat capacity of the various 
regenerator materials and that of both 4He and 3He at P0 = 1.0 MPa. 

 
Effect of Phase Angle φc, Hot Temperature, and Pressure Ratio 
 

The phase angle between the flow and the pressure affects the flow amplitude, and, 
therefore, the regenerator loss, for a given acoustic power flow.  The minimum loss is 
expected to occur for flow in phase with the pressure, but that phase can occur at only one 
location in the regenerator, which should be near the midpoint.  For that phase to occur 
near the midpoint, the phase at the cold end φc will be approximately -30° (flow lagging 
pressure).  All the results discussed so far are have been for φc = -30°.  Such a phase can be 
achieved with a Gifford-McMahon (GM) cryocooler or a Stirling cryocooler, where the 
phase is set by motion of the displacer.  In pulse tube cryocoolers the phase at the warm 
end of the pulse tube needs to be about -60° to achieve φc = -30°.  With a Stirling-type 
pulse tube cryocooler operating at 30 Hz, a -60° phase at the pulse tube warm end is 
possible only with a sufficiently large acoustic power flow at the inertance tube entrance 
[11].  When the warm end of the pulse tube is at a low temperature, such as 30 K, the 
desired phase can be achieved with less acoustic power.  However, for a 4 K pulse tube 
cryocooler designed for net refrigeration powers less than about 0.5 W, the acoustic power 
flow is such that the desired -60° phase cannot be achieved, even with the inertance tube at 
a temperature of 20 K to 30 K.  A double inlet can be used along with the inertance tube in 
such a situation to increase the phase shift, but the additional power flow through the 
secondary orifice often limits the phase shift to about 30° (φc ≈ 0°) before the overall cooler 
efficiency is decreased.  Alternatively, a mechanical phase shifter, such as a warm 
displacer, could be used at the warm end of the pulse tube to achieve any desired phase 
shift, even in a low-power cryocooler. 

FIGURE 11 shows how the regenerator efficiency varies with φc for hot temperatures 
of 20 K, 30 K, and 40 K.  With a purely resistive impedance φc ≈ +30°, and according to 
FIGURE 11, it would not be possible to achieve 4 K with either 4He or 3He when the warm 
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FIGURE 11.  Second-law efficiency of 4 K regenerator as a function of phase φc and hot temperature. 

end is at 40 K.  Also shown in FIGURE 11 is the effect of pressure ratio at the cold end.  If 
the pressure ratio is reduced from 1.5 to 1.3, the efficiency decreases significantly, and it 
would not be possible to achieve 4 K even with 3He when the warm end is at 30 K and the 
phase at the cold end is +30°.  This figure shows the importance of reducing φc to 0° or 
lower for achieving 4 K efficiently. 
 
Effect of Flow and Hydraulic Diameter for Th = 30 K 

 
Most of the previous calculations were carried out by use of a flow rate that gave 

Vrg/VE = 9.8 for 4He and 7.7 for 3He.  As shown in FIGURE 6, such values are close to the 
optimum for Th = 20 K.  Because 30 K may be a better hot temperature for overall system 
performance, we investigated the effect of flow rate on efficiency when Th = 30 K and φc = 
-30°.  Both higher and lower flows led to a reduced efficiency.  The results presented here 
have been for the case of spheres with a diameter of 100 µm and a porosity of 0.38.  The 
sphere diameter was then varied with Th = 30 K and φc = -30°.  For 80 µm spheres the 
efficiency increased a negligible amount, and for 125 µm spheres the efficiency decreased 
20 % for 4He and 12 % for 3He. 
 
 
CONCLUSIONS 
 

The NIST numerical model REGEN3.3, which incorporates the properties of both 4He 
and 3He as well as of 30 regenerator materials, was used to find the optimum set of 
parameters that yields the highest second-law efficiency of a 4 K regenerator operating at a 
frequency of 30 Hz.  In all cases 3He yields a higher efficiency by about a factor of two or 
more compared with that obtained when using 4He. Because spheres of many regenerator 
materials are commercially available, this work focused mostly on packed spheres of 38 % 
porosity.  A configuration using parallel holes of 25 µm diameter with a porosity of 20 % 
could achieve somewhat higher efficiencies, but such geometries have not been developed 
yet in rare-earth materials. A layered regenerator with GOS spheres at the cold end and 
Er0.5Pr0.5 spheres at the warm end was found to be the best material combination, although 
HoCu2 could be substituted for GOS and achieve the same or slightly higher efficiency 
when the hot temperature was 30 K.  Spheres of 100 µm diameter are best at the 30 Hz 
frequency investigated here. We found that efficiency decreased only slightly as the hot 
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TABLE 2.  Parameter values that yield an optimized 4 K regenerator of packed spheres. 
Working fluid 3He Material 

properties Regenerator Matrix GOS + Er0.5Pr0.5 (layered 48 %: 52 %) 
Vrg/VE L (mm) Dh (µm) Config. ng Geometry 
5 - 8 30 41 Spheres (100 µm) 0.38 

P0 (MPa) Pr f (Hz) Th (K) φc (deg.) Operating 
conditions 1.0 1.5 30 30 -30 

 
FIGURE 12.  Comparison of relative entropy production due to losses and net refrigeration for an 
optimized 4 K regenerator/pulse tube stage with 3He and 4He and a 80 K regenerator/pulse tube with 4He, 
assuming a pulse tube efficiency of 80 % and realistic conduction losses in the tube walls. 

temperature increased until temperatures above 35 K were used.  Thus, a hot temperature 
of 30 K is probably best for overall system performance and simplicity for a reduced 
number of stages.  A cold-end phase φc of -30° gives the best performance, although a 
phase of 0° has an efficiency only slightly lower.  The efficiency for a phase of +30° is 
dramatically lower and will prevent reaching 4 K in many cases.  TABLE 2 summarizes 
the optimum set of parameters for a maximum efficiency in a 4 K regenerator made with 
spheres.  The table is for 3He, but the only difference when 4He is used is that the volume 
ratio Vrg/VE should be between 7 and 10 and the layering of the regenerator matrix should 
be 43 % Er0.5Pr0.5 and 57 % GOS.  With the conditions listed in TABLE 2 for 3He, the 
reduced regenerator loss is 0.36 and the second law efficiency (Th/Tc)COP is 25 %.  For 
4He the loss is 0.51 and the efficiency is 14 %, but if HoCu2 is added as an intermediate 
layer, the loss becomes 0.42 and the efficiency becomes 15 %.  FIGURE 12 summarizes 
the relative entropy generation due to losses and net refrigeration for the optimized 4 K 
regenerator and pulse tube with both 4He and 3He working gas compared to an optimized 
regenerator and pulse tube operating at 80 K with 4He.  In both cases the pulse tube 
efficiency was taken as 80 %.  This figure shows the very large real gas effects in a 4 K 
regenerator, especially one with 4He working fluid.  The large entropy generation due to 
the real gas effect and that due to regenerator losses leaves little entropy flow available for 
any net refrigeration at 4 K.  However, the significant reduction of those losses when 3He is 
the working gas allows for a much larger net refrigeration power for the same input power. 
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