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ABSTRACT

Linear-resonant compressors with flexure springs and clearance seals have recently been
developed for use in long-life Stirling and pulse tube refrigerators. This paper describes a set
of equations that are used to design the various components in the compressor given specified
performance criteria. The components considered are the moving-coil linear motor, the mass of
the moving components, the magnet assembly, the flexure springs, and the clearance seals. Both
radially and axially magnetized magnets are analyzed and the criteria for selection are developed.
Methods for reducing the compressor size and mass are discussed as well as the influence of the
stroke-to-diameter ratio on the design of flexure springs. The design equations have allowed the
development of scaling laws for linear motor compressors covering a wide range of compressor
sizes from 3 watts to 4 kilowatts.

INTRODUCTION

This paper develops a set of equations for the geometrical parameters of a linear motor
compressor in terms of the performance parameters. These equations then show how the
dimensions are affected by the specified performance parameters. Figure 1 shows a schematic
of a simple reciprocating compressor with a linear motor drive. The axial direction is parallel
to the center line (defined here as the z axis), and the radial direction is perpendicular to the
center line. These compressors use a current carrying wire (and thus, are called a moving coil
design) within a magnetic field to impart a linear force in the axial direction to the piston while
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Figure 1. Schematic of a linear motor compressor. The drawing is axisymmetric about the
dashed center line.

conventional rotary compressors use a crank shaft to provide this force. Rotary compressors
apply large radial forces to the piston, which provide no useful work, cause a large amount of
wear, and usually require lubrication. Lubrication is a problem in cryocoolers since contaminant
can often migrate to the cold end of the refrigerator and liquefy or freeze. Linear motors
eliminate radial forces completely since the force created in the wire is perpendicular to both the
magnetic field and the direction of the current in the wire.! A linear motor compressor can
operate at any frequency but is most efficient operating at a unique resonant frequency, usually
in the range of 30 to 60 Hz.

Vibration of reciprocating compressors can be reduced by using a balanced-opposed
design. In this configuration, the pistons are counter-balanced in-line, 180° out of phase, as
shown in Figure 1. Traditionally the seal between the piston and cylinder has been accomplished
using piston rings and is another source of wear in the compressor. Clearance seals can achieve
the same effect while eliminating contact between the piston and cylinder wall, thus eliminating
wear. A gap generally on the order of 15 um is used and allows only a small percentage of the
working fluid to pass through during a half cycle. The gas pressure on the backside of the piston
is the average of that in the compression space, so there is no loss of gas from the compression
space when averaged over one cycle. Clearance seals require very good alignment between the
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piston and cylinder over the entire stroke. Traditional sliding bearings could be used to achieve
this alignment, but there will be wear in the bearings and the alignment will be lost over time.
Magnetic bearings could also be used but are large and complex. Flexure springs address this
problem since they have no rubbing parts and are simple to construct. The flexure spring is
constructed from a thin flexible material and is much stiffer in the radial direction than in the
axial direction. They were first used in a Stirling refrigerator at the University of Oxford.?

The design of a linear motor compressor generally begins by specifying the performance
parameters. These parameters are: (1) the required PV power va- (2) the desired efficiency of
conversion of electrical power to PV power 1, (3) the operating frequency f, (4) the average
system pressure P,, (5) the pressure ratio P,, defined as the maximum pressure over the minimum
pressure, and (6) the phase angle ¢ by which the pressure leads the piston position. In some
cases the compressor swept volume ¥, may be used as an input parameter in place of the PV
power. The compressor geometry, such as the stroke, clearance gap, coil dimensions, magnet
configuration, return iron dimensions, and flexure spring dimensions must be optimized to give
the minimum weight and/or system size that provides the specified performance parameters.

PHASOR ANALYSIS

Phasor analysis allows us to write simple algebraic equations in place of differential
equations when solving sinusoidal steady-state problems.” A phasor is a complex number
expressed in polar coordinates as v = ¥,¢“*® and whose projection on the real axis describes the
sinusoid v(f) = V,cos(wt+d). The phasor v is represented by an arrow of length |v|=F, and an
angle ¢ measured counterclockwise from the positive real axis at time =0. The rotation of this
phasor about the origin in a counterclockwise direction with angular frequency w describes the
time dependance of the phasor. It is necessary to show the phasors only at /=0, since all phasors
for a linear system have the same frequency. Such a visual display is clearer than showing many
time dependent sinusoids. The time derivative of a phasor is given as

d

Ve Kord) = jol e X", (1

Since i = ™?, we can write the derivative as

Vo= @l eCrPe 2 = g g urbenid) )

Equation (2) shows that the time derivative of a sinusoid leads the original sinusoid by /2
radians or 90°. Phasors may be treated the same as vectors, but they are in complex space

instead of real space. We represent phasors in this paper with bold variables.
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Phasor analysis is useful for regenerative cryocoolers, such as Stirling and pulse tube
refrigerators, because of the nearly sinusoidal variations of volume, pressure, mass flow, and
temperature. Phasors are used here to represent all the forces acting on the sinusoidally driven
piston of the compressor. The driving force F;,, that must be supplied by the moving coil of the
linear motor is given by the force balance

F,, =mi +bi +kz +PA -P,4 3)
=l P E ¢ Fo4 Fy —F;
where z is the position of the piston from its midpoint (positive numbers toward smaller
compressor volume), m is the mass of the moving piston and coil assembly, b is the dissipation
constant that gives rise to viscous losses, &, is the flexure spring stiffness in the z direction, P is
the dynamic pressure in the compression space, Py is the dynamic pressure on the backside of
the piston, and 4 is the piston cross-sectional area. Let the position phasor be given by

z =(s2)e'™, 4)
where s is the piston stroke and the phase angle of this reference phasor is made zero. The

dynamic pressure in the working space P and in the backside P, are given by
P = P a'Wt, ®)

P, =P et ©)

where P, and Pj, are the amplitudes of the dynamic pressures with phase angles of ¢ and B
respectively. Note that B refers to the negative of P,. The resulting force balance from Eq. (3)
is represented by phasors in Fig. 2. The magnitudes of the phasors are given by

|Fm| =LWIB,

1F‘I =%'kxs’

|Fn| =P3;A, )
|F,| =P;A,

|F,,| ==fsb,

IF,| =21f2sm,

where F,,, is the linear motor force, F, is the mechanical spring force, F,, is the viscous
dissipation, and F; is the inertial force. The phase angle of F, is 0° because it is in phase with
the position. The phase angle for F,, is 90° since it is in phase with Z. The phase angle for F;
is 180° since it is in phase with Z. The phase angle ¢ will depend on the particular cold head
attached to the compressor. A typical value based on experiments may be about 35° to 40° for
a pulse tube and about 40° to 45° for a Stirling refrigerator. Accurate values of this phase angle
are needed for the proper design of the compressor. In most practical compressors, the volume
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Figure 2. Phasor diagram showing the forces acting on the piston.

of the gas on the backside of the piston is much larger than that of the compression space. As
a result Fj is negligible. Also the velocity of the moving components is usually small enough
that the viscous dissipation term bZ is negligible compared to the pressure term. The flow
through the clearance gap results in a loss of some of the piston PV work that never reaches the
cold head, however it has a negligible effect on the force balance. Figure 3 shows the phasor
diagram without the backside pressure and viscous dissipation phasors. The relative magnitudes
and phase angles are typical of most compressors, except 6 may be zero or even slightly negative
in some cases. Figure 3 shows that the motor force is minimized by adjusting m to make 6=0.
This condition is defined as resonance, which occurs when the inertial force is balanced by the
sum of the real parts of the mechanical and gas spring forces. Since the motor force varies as
(1/cosB), O can be increased to +20° with only a 6.4% increase in the motor force. For
positive 6 (F,, lagging ) the moving mass can be reduced, which reduces the vibration effects.

DESIGN EQUATIONS

Moving Mass

To operate the compressor at a predetermined frequency, it is necessary to determine the
moving mass needed to achieve a resonant or near resonant condition. The moving mass is the
entire piston assembly including the piston, piston shaft, coil, coil holder, and a portion of the
flexure spring mass. To calculate the moving mass, the forces in Figure 3 are balanced in the

real direction to give
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Figure 3. Phasor diagram used for the force balance on the piston.

|Fpylsin® +2n%f*sm = ks +P Acosd. @®
The area of the piston A is expressed in more fundamental parameters as
A=V_Is, ©)

where V_, is the compressor swept volume and is to be regarded here as a specified parameter.
The amplitude of the dynamic pressure is best expressed in the form of two components as

P, =(P,/P,)P,, (10)
where (P,/P,) is related to the pressure ratio P, by
P-1
o~ (11
P+1

The motor force F,,, is calculated from a force balance along the imaginary axis in Figure 3,

|F,,|cos® =P (V_/s)sind. (12)
The term |Fy,,| from Eq. (12) is substituted into Eq. (8) and the moving mass is found to be
%k,s + (P,IP,)P,(V../s)cosd(1 - tan¢) tan6) 5

" 2nlsf? '
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Compressor Power

The instantaneous PV power Wj, produced by the compressor is given as

W,, =-PV., (14)
where V,, is the time rate of change of the compressor volume. The time-averaged PV power
<H",,.> is given by

Wy = -LREPT] = SRl eMT e ™) =10,V Jsnb, (9

where V., is the complex conjugate of ¥,, and Re[ ] denotes the real part of the argument. In
a simpler manner using phasors, the time-averaged PV power is given by

<W,,> = -%P'I;'w =%Pf[1}m|cosa, (16)

where the dot product treats the phasors as vectors and « is the phase angle between P and -V,
Because a = n/2-¢, Eq. (16) becomes

<W,,> = %P,ll;'“lsinda, (17)

which is the same as Eq. (15). Because |V, | = 2r/(V, /2), the time-averaged PV power can be
expressed as

<W,,> =(n/2)fP,V,sind. (18)

Equation (18) is used to interchange input parameters between ¥, and (WP,P in the design
equations.

Clearance Seal

The gap thickness for the clearance seal must be made sufficiently small to keep the
amplitude of the flow rate through the gap small compared with the amplitude of the flow rate
between the compressor and the cold head. The PV work lost through the gap should be small
compared with the total PV work delivered by the piston. Flow through the narrow gap is
always laminar. Thus, the flow impedance Z, of the gap is a function only of the gap geometry
and can be expressed as*
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122
7«05 <8 (19)
,.LV:‘ w:‘g3

where AP is the pressure drop across the gap, p is the viscosity, I},:ir is the volume flow rate
through the gap, L, is the gap length, w is the gap width, and #, is the gap thickness. Because
of the proportionality between AP and I;'cs, the amplitudes can be used for these two quantities
instead of the instantaneous values. The dynamic pressure amplitude P, is equal to |AP| and
the amplitude of ¥,, can be expressed as V. =|V,||V,|/|V,| where |V,|=2%AV,/2). The
gap width is expressed as w=nD =2y/(n¥_ /s) foranannular gap. Substituting these terms into
Eq. (19) and solving for the clearance gap thickness ¢, gives

. 6pL,, f(|1?q|/|r?“|),/mr/m 3 (20)
s (P,/P,)P, ’

The time-averaged PV power loss due to flow through the gap is <H'fg> = VzP-l;'q =
Y2P, |V, |cosP, where B is the angle between l'/q and P, which is 0 from Eq. (19), leading to

<W> =_P,|V,| (1)
Substituting Eqgs. (21) and (17) into Eq. (20) yields

1
) ) BN E
. 6L, [ (<W>I<W,,>)|nsV,, Smd)] ’ (22)
£ (P,/P,)P, j

where <W‘>!< H",,,? is the fraction of PV power lost to flow through the gap. Equations (20)
and (22) are valid for a uniform gap. If the piston is not concentric with the cylinder, the flow
loss can be significantly higher since the flow is proportional to rj according to Eq. (19).

Linear Motor

A linear motor can be made with a moving coil, moving magnet, or moving iron.
Kerney’ compares these three types of linear motors. Because of its low weight, high efficiency,
and zero radial forces, the moving coil motor is the one most often used for space applications
of cryocoolers. With the moving coil motor, the magnet can be magnetized in either the radial
or axial directions as shown in Figure 4. In order for a sinusoidal current in the coil to produce

a sinusoidal force, the coil must be in a uniform magnetic field. The coil can be made short and
790



PL-CP--93-1001

Permanent magnet

R

NN 7
s i——IR 2 gs %
/ N / = !

Y \\\\\\\\QQQN A _»l
Mg

-(—W,,.—h-<sa--(—%—>l
(a) (b)

Figure 4. Geometry for (a) radial magnet and (b) axial magnet.
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remain in the uniform magnetic field for the entire stroke (short coil as shown in Figure 4b) or
a fixed magnetic field may remain within the coil for the entire stroke (long coil as shown in
Figure 4a).

First the short coil design is discussed. The first step is to calculate the coil volume V,,
which is the volume of wire needed to produce the desired force including any insulation or
epoxy used in construction of the coil. To determine the coil volume, the first step is to look at
the magnitude of the force produced by a current I in a wire of length L,, in a magnetic field B

|F,,,| = |IIL,B. (23)
The time-averaged power generated by the force F,, is
<W,,> =112F,, i =(n12)fs|F,,,|s cos®. 24)
When Eq. (23) is substituted into Eq. (24) the power output becomes
<W,,> =n/2(|I|L_B)fs cos. (25)

The volume of wire in the coil is ¥,=L,4,=pV,, where p is the packing fraction of copper in the
total coil volume V.. Solving this for L, and substituting L,, into Eq. (25) gives

g n|I|pV Bfs cosO
<W,> = Il ‘;Af = .;.|j|pV=st cos6, (26)

w
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where j is defined as the current density j=I/4,. Equation (26) can now be solved for V_,

P /s @
¢ =|j|pBfs cosB

Because j is not a specified parameter, we express it in terms of known quantities. The time-
averaged Joule heating in the coil for an oscillating current is
iI*pL,

24,

w

(28)

(Q.}} =

The value used for the resistivity p of the wire must reflect the increase in temperature of the coil
due to Joule heating. The current density is now calculated in terms of known quantities by
dividing Eq. (28) by Eq. (26) and solving for ||,

| = (<Q'j>f<WP,,>)1|:st cosB ’ 29)

where <Q.J.>!< Wpey> is the fraction of power lost to Joule heating. The current density in Eq.
(29) can be used to determine the wire size for the available current. The coil volume can now
be determined by substituting Eq. (29) into Eq. (27),

v i (30)

° mpBf%s 2(<QP:‘< W,,>)cos*0 .

The coil volume in Eq. (30) is valid for both the axial and radial magnet configurations, but only
for the short coil where the coil volume is in the magnetic field during the entire stroke.

Once the coil volume is known, the magnetic circuit, which includes the permanent
magnet, air gap, and return iron, is designed. The short-coil, radial magnet will be discussed in
this paper; similar steps can be used for the other cases. The volume of the air gap is the volume
of the coil including clearance between the pole pieces and the coil plus the swept volume of the
coil during the stroke. Since this volume is dependent on the final geometry of the magnetic
circuit, a guess is made as to how much larger the air gap volume must be compared to the coil
volume. Then the circuit is designed for this gap volume and it is determined if the coil will
remain in the gap during the entire stroke. If the coil leaves the gap or the gap is too long, a
new guess is made for the gap volume and the steps given below are repeated until the coil just
remains within the gap during the entire stroke. Figure 4 shows the geometry of both a radial
and axial magnetic circuit and defines the geometry variables. The only difference in the
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magnetic circuit geometry between the long coil and short coil designs is the added length of the

stroke to the return iron in the long coil, radial design. The first step in designing the magnetic

circuit is to guess the ratio of gap volume to coil volume b, then find the gap volume,
V,=bV,. €Y}

Next the volume of magnet can be determined from®

2
_ c, B Vs (32)

" (BH),.

where (BH),,, is the maximum energy product of the magnetic material and c,, is a scaling factor
used to account for magnetic losses due to the iron and fringing effects. Equation (32) gives the
minimum volume of magnetic material needed to achieve the desired magnetic field in the air
gap. Now it is necessary to decide on the length L, of the air gap. This value is picked by the
designer and the calculation should be done for a number of different values to see its effect on
the magnetic circuit size and weight. Small values of L, are better for heat transfer of the Joule
heating produced in the coil. The optimum length L, of the magnet can now be calculated by

_b,BL,

m ¥

H

(33)

where b, is a scaling factor used to account for imperfections in the magnetic circuit and H,, is
the demagnetizing force in the magnet at the operating point. To minimize the amount of magnet
material the operating point is taken at (BH),,, for the permanent magnet material selected. The
largest (BH),, values are currently obtained with NdBFe permanent magnets. The cross-
sectional area of the magnet perpendicular to the field is 4,=V,/L,. Similarly the cross-sectional
area of the gap is 4,=V,/L,. Next the cross-sectional area of the return iron can be determined
by 4~(B/B)A,, where 4, is the cross-sectional area of iron needed to keep the magnetic field in
the return iron from saturating, and B; is the maximum allowed magnetic field to keep from
saturating the iron. Now the inner diameter of the magnet and air gap can be calculated using a
center hole of specified size for the piston shaft and by using the cross-sectional area of the iron,

D, =D, = 4(4,+4)/n, (34)

where 4, is the cross-sectional area of the hole needed for the shaft and D, is the inner diameter
of the air gap, defined in Figure 4. The inner diameter of the air gap is placed at the smallest
allowable diameter to reduce the extra volume introduced by the stroke of the piston. The extra
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volume of the gap, due to the stroke, is dependent on the cross-sectional area of the gap. A
larger gap cross-sectional area means a larger gap volume will be needed to contain the coil than
would be needed if the gap cross-sectional area were smaller. This consideration also applies to
the long coil design, a larger coil volume will be needed for larger diameter coils. Coils
should be placed on the smallest possible diameter. The outer diameters of the magnet and air
gap are given by

D, =D, +2L; D, =D, +2L, (33)

ig 4

Next the width w,, of the magnet can be determined by
4V
Wy, & s 28)
ﬂ(Dnm-Dl‘m)

The width w, of the air gap, can be found using a similar equation. Since the length of the
magnet will always be larger then the length of the air gap, the outer diameter D,; of the iron can

be found by
D, = D2 +a4,Ix . (37)

The inner diameter of the coil can be found by adding an appropriate clearance factor to the inner
diameter of the air gap, while the outer diameter of the coil is found by subtracting a clearance
factor from the outer diameter of the air gap. When deciding on the clearance factor for the
inner diameter of the coil, allowance for the bobbin on which the wire is wrapped must be
considered. Now that the diameters of the coil are known, the width w, of the coil can be found
using an equation similar to Eq. (36). The difference w, - w, should be the stroke of the piston.
If this is not the case, a new b, guess in Eq. (31) is made for the volume of the gap and the
procedure is repeated until w, - w=s. A similar procedure can be used for the short coil, axial
magnet, by using the appropriate geometry. This procedure should be repeated for a number of
different piston strokes to determine the effect of the stroke on the size and weight.

The long coil designs always have the entire magnetic field within the coil. The
difference in coil volume between the short and long coil designs is that for the same joule
heating loss, the current density must be lower for the long coil design since it contains more
wire then the short coil. The fraction of the coil within the gap is wy/(w,+s) = [1+(s/wp)]". Thus
Eq. (30) gives the volume of the coil within the gap if the relative Joule heating loss within this
portion of the coil is also the same fraction of the total relative Joule heating loss (<Q'j>f< Wop>).
The total coil volume for the long coil design then becomes
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. 2
2p<Wp,>(1+s/w) 38)

Vc = . . ’
n'pBf s (<QP>I<W,,>) cos’0

where w, is the width of the gap as shown in Figure 4. Equation (38) is valid for any long coil
case. Using Eq. (38) for the coil volume and a procedure similar to the one given above, the
magnetic circuit can be designed for both long-coil cases. The major difference between the
procedures for the short and long coil cases is that a initial guess must be made for the width of
the gap in the long coil case and for the long coil cases, w,+ s = w, is used to determine if the

solution is correct.

The constants c,,, b,,, and B,, must be adjusted to make these equations agree with more
accurate results calculated from finite element techniques. By using finite element software for
magnetic circuits, the proper values of the constants can be determined for a wide range of
geometries. The constants vary some-what with the geometry. Using a finite element package,
the constants have been determined to be: ¢,, = 1.2t0 3, b, = 1.2 to 1.8, B, = 1 to 1.6 Tesla.

The efficiency of the linear motor is given by

. - 1
N, =<W>IW, . = — - - — (39)
(1+ <Q,>KWP;> - <Wz>f<WP,;v +<WpPI<W,,>)

where #,,,, is the electrical input power and <W,> represents all other losses not discussed
previously. These other losses, such as windage and eddy current losses, are usually negligible.
System size and weight are decreased by increasing the joule heating loss <Q,>, but that leads
to lower efficiency. A good compromise for satellite applications often gives <Q'j>f< Iff’,,,p =0.1
to 0.2 and <Wx>f<ﬁ",,> = 0.02 to 0.05. Motor efficiencies of 75% to 85% are typical.

Advantages and Disadvantages of the Different Magnetic and Coil Configurations

Long coil designs require more coil volume but a smaller air gap volume, giving an
overall savings on system weight at the expense of adding to the amount of mass that must be
moved. This is an advantage to smaller systems that must normally add additional moving mass
to operate at the desired resonant frequency. Comparing Eq. (38) to Eq. (30) shows that the long
coil volume is larger than the short coil volume by the factor [1+(s/wg)I>. Typical values of s/w,
vary from 0.5 to 1 so that the long coil volume varies from 2 to 4 times the short coil volume.
The magnet and iron weight of the long-coil configuration will be about 40% to 70% of that for
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the short-coil configuration. The outer diameter of the long-coil configuration will be about 80%
to 90% of that for the short-coil configuration. Long coils use more potting compound and out-
gas more than short coils. A portion of the wire in the long coils experiences a magnetic field
that varies from zero to the value in the air gap. The eddy currents induced within the wire
diameter will lead to an additional heating effect that is on the order of 1% of the PV power.

Radial magnet configurations offer reduced system weight and size compared to axial
magnet configurations. System weight for radial magnet configurations will be 50% to 70% of
that for the axial magnet configurations. The outer diameter of radial magnet configurations will
be 60% to 70% of that for axial magnet configurations. The cost of a radial magnet will be more
then the axial magnet since radial magnets must be made in segments in order to be magnetized
in the radial direction. If a radial magnet is designed properly, the epoxy used during assembly
can be removed after the magnet is assembled.

Flexure Spring

Flexure spring bearings are used in place of traditional sliding bearings. They have the
advantage of not having rubbing parts to wear out and contaminate the fluid. Flexure springs are
constructed of a thin material having a high ratio of fatigue stress limit to Young's modulus.
Stainless steel or beryllium copper are good candidates for such a material. The springs are
designed to have a high radial stiffness and a low axial stiffness. This allows the clearance seal
to maintain its close alignment while increasing the moving mass only a small amount due to &,
in Eq. (13). The desired radial stiffness , of the flexure springs in normal gravity is

k =28, (40)
Cit.

where g is the gravitational constant and C, is the ratio of allowable radial displacement to the
clearance gap thickness. The value of C, should usually be about 0.5 or less to prevent
channeling from occurring in the clearance gap that will cause an increase in the power loss. The
desired axial spring stiffness is expressed as

k, =4Cn*mf?, (41)

where C, is the ratio of axial spring force to the inertial force. From a practical standpoint, C,
should not be less than about 15% or instability of the system may result when dual-opposed
configurations are used. Values higher than 25% begin to significantly increase the moving
mass. The desired ratio of radial to axial spring stiffness is then given by
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L S 42)
k., 4n’CCt f?

As an example for C, = C, = 0.20, and 7, = 15 pm, then k/k, = 460 at /= 30 Hz and k/k, = 204
at f=45 Hz. Because there may be large gas side forces associated with slight axial
misalignment, the actual value of C, should be much less than 0.20 to prevent any possible

contact during operation.

The Oxford-style flexure spring,” shown in Figure 5a, has been used for several years for
small compressors. A problem with the Oxford spring is the highly localized stress concentration
that occurs around the holes at the end of the photoetched slots. These stress concentrations
occur because the flexing arms project out from the clamped region at an angle much different
than 90°. As a result, in order to keep the peak stress below the maximum allowable stress for
infinite fatigue life, the flexing arm has to be made quite long. Hence, the need for a spiral of
at least a whole turn. The long flexing arm greatly reduces the radial stiffness. With properly
shaped clamp rings, the flexing arms of the Oxford spring could project away from the clamp
at nearly 90° and reduce this stress concentration. The arm length can then be reduced, leading
to a greater radial stiffness while still keeping the peak stress below the allowable stress. Figure
5b shows the result of such a modification similar to that proposed by Wong et al.”. By

Moving rigid
component
Stationary rigid
component
(a) (b)
Figure 5. (a) Oxford flexure spring, (b) Linear flexure spring.
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connecting the flexing arm to the moving rigid component at the maximum possible radius, the
axial rotation is reduced although it adds additional mass to the moving component. The center
hole for the shaft can be as much as 25% of the outer diameter of the spring, which allows for
stiffer shafts with the same mass. Because of the axial rotation, the stress concentrations are
minimized by having the clamped edge along the dashed lines in Figure 5b. For the sake of
simplicity the following analyses of the spring ignore this effect and use a clamped edge shown
by the solid lines in Fig. 5b.

Accurate calculations of stiffness and stresses in these springs can only be done with
nonlinear finite element techniques. The straight arms of the linear flexure spring are more
amenable to simple analytical calculations which help scaling the flexure springs to different sizes
and serve as a good starting point for detailed design. By using simple beam analysis for a
cantilever beam with both ends clamped, the maximum stress is found to be

0., =3E@s/2)t,/L;, (43)
where E is Young's modulus, , is the spring thickness, and L, is the spring length. A large ratio,
0,../E, allows for larger strokes. The axial and radial stiffnesses are

k, =3NEwt /L] (44)

k, =3NEtw G(s/L)IL,, (45)

where w, is the width of the spring arm, N, is the number of springs, and the factor of 3 comes
from the 3 arms of the spring. G is a function of (s/L,) and is included to account for the
decrease in radial stiffness with axial displacement. It has the property of G(0)=1. This function
can be determined only from a finite element analysis of a particular spring design. The radial
stiffness decreases rapidly as the axial displacement increases and at full displacement may be
at least an order of magnitude less than that at zero displacement. Equation (45) is a poor fit to
the finite element analysis performed on the linear spring. A better fit is achieved if it is
assumed that one spring arm acts in pure tension to provide the radial stiffness which results in
k, = NEtwG(s/L)IL, (46)

The ratio of stiffness is given by
klk, = (L,/t,YG(s/L)/3. (47

The required number of springs is found by comparing Eq. (44) with Eq. (41) to arrive at

798



PL-CP--93-1001

4n’C mfL;
W s Gl L (48)

3Ewp,]

The resultant C, from Egs. (46) and (40) should be less than some established value such as 0.2.
The desired number of springs will be in the range of 5 to 15 for most compressors. A thin
spring (low ¢,) leads to low stresses according to Eq. (43), high radial to axial stiffness ratio
according to Eq. (47), but a large number of springs according to Eq. (48).

In the Linear design the spring length and inner diameter of the outer clamp ring are
related by

L =D,/2, (49)

where D, is the inner diameter of the outer clamp ring. Likewise, the spring width is
w, =D /5. (50)

Thus, Egs. (43) through (47) become

o = 6Est /D], (1)
k, = 3N(8/5)Et}ID}, (52)
k. = N(2/5)Et G(s/D), (53)
k/k, = (D,/1,)*G(s/D,)12. - (54)

Using Eq. (51) to solve for ¢, in terms of the maximum allowed stress, Eq. (54) can be expressed

in the alternate form
~ ii(s:’l?)‘)2 G(s/D,)

k,/k, (55)
(9,,/E)
and Eq. (48) for the linear spring design can be expressed as
1 2 2 3
80n*C_mf*(s/D,) (56)

! E(o, /EYD,

For most spring designs the product (s/D,)*G(s/D,) is an increasing function of s/D. Thus,
according to Eq. (55) a high k/k, is obtained by making s/D, as large as possible. But according
to Eq. (56) a large s/D, leads to a large number of springs. A compromise is then needed.
Typical s/D, values range from about 0.10 to 0.15. Equation (56) also shows that D, should be
made as large as possible to reduce the number of springs. In practice the maximum D, will be
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about that of the magnet outer diameter D,,. The stroke should then be made as large as possible
for a desired number of springs to maximize k/k, and to minimize V, and the resulting linear
motor size and mass according to Eq. (30). We can express s in terms of N, and D, by first
using Egs. (48), (49), and (50) to solve for ¢, in terms of N, and D,. This ¢, is then substituted

into Eq. (51) to obtain
173

o /E)| EDN
5 = LConE) = | (57)
6 (5!6)112C:mﬁ
Substituting this equation into Eq. (55) gives
2/3
- EDJN‘ G(SfD') (58)
T | (5/6)R*C mf* 12

A material with the largest possible value of E%(0,,./E) is desirable to increase the stroke and a
large E is desirable to increase k/k,. Thus, stainless steel is better than beryllium copper from
both standpoints. Because D, is related to the motor diameter, and the motor diameter was found
originally by assuming a given value for the stroke, an iterative procedure must be used to find
a consistent set of 5, m, and D, values that minimize the motor size and weight, yet provides the
necessary k/k, to prevent contact between the piston and cylinder.

SCALING LAWS

The set of equations developed in the previous section can be used for the original design
of a flexure spring compressor. Finite element analysis is required for the calculation of the
flexure spring radial stiffness and for more accurate values of the other spring parameters. It is
also needed for more accurate sizing of the magnets and return iron in the linear motor.
Calculations with finite element software can be time consuming since many trial and error
calculations are required. These design equations minimize the amount of trial and error
calculations necessary. Once a detailed design is developed for one size compressor, any other
size can be quickly designed if the correct scaling laws are known. Two cases will be
considered. The simpler case is that in which the frequency is allowed to vary as the size
changes. That case is treated first and the case of constant frequency will be addressed later.

Variable Frequency

Let K be some constant which is used to form the scaling variable for the various dimensions and
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the frequency. The base design corresponds to K=1, whereas an increase in size utilizes X>1 and
a decrease in size utilizes K<1. The scale factor for each parameter will be some power of K.

For the case of a variable frequency, use the following scaling laws:

frequency, S=1K magnet inner diameter, D,, « K
stroke, s=K magnet outer diameter, D,, =< K
piston diameter, D = K7 magnet width, w, =K
piston length, L =K% spring diameter, D, =<K
coil inner diameter, D,=K spring thickness, f, <K
coil outer diameter, D, =K number of springs, N, =K.
coil width, w, <K

The parameters P,, P,, (<Q',>/<}i’,,>), P> B, (BH)pnars $, and 6 remain constant. Using the relevant
design equation, the scaling factors for various related parameters are obtained. The selection
of scale factors given above must satisfy the consistency equation that relates the coil dimensions
to the compression space parameter, Eq. (30). This is shown in line 1 of Table 1. Scale factors
for various performance parameters are given in lines 2 to 14 of Table 1. The terms |j|, k/k,,
and o0, are independent of the scale factor which is the ideal case. However, the relative
deflections, lines 13 and 14, vary as X instead of being independent of K. Thus, these parameters
place an upper limit on X, which depends on the initial values of AR/z, and Az/s. All values of
K below 1 would be permitted although too small values of K lead to unacceptably high
frequencies. Lines 9 to 12 show a scale factor of K for all the force terms. Thus, their relative
magnitudes will not change, which is desirable.

The scale factors for this case are particularly desirable since all the spring and linear
motor dimensions vary as K. As a result there is no need for recalculations with finite element
software for either of those two complex components. Because of the limitations associated with
the non-ideal scale factor for the relative deflections as well as with the number of springs, this
case is best used for size reductions rather than size increases.

Constant Frequency

A good (but not necessarily exclusive) set of scale factors for this case is as follows:

frequency, f=K° magnet inner diameter, D,, = K

stroke, s < K'? magnet outer diameter, D,, = K
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piston diameter, D = K% magnet width, w, < K'?
piston length, L,=K spring diameter, D, =K
coil inner diameter, D, =K spring thickness, t, = K7
coil outer diameter, D, =K number of springs, N, = K°.
coil width, w, = K'?

The resulting performance scale factors are shown in Table 1 for the constant frequency case.
As shown in line 1, the selection is consistent and all terms of the force balance have the same
scale factor. Non-ideal scale factors occur for |j|, k/k,, and Az/s. However, for the spring
s/D,=1/K'? in this case, which means that for large K the smaller s/D, will contribute to a greater
radial stiffness from the G(s/D,) factor that counteracts the 1/K dependence predicted from simple
beam theory. Likewise, the larger Az/s at low K will also be compensated because of the larger
s/D,. The variable current density does not present any inherent problems as long as X is not

Table 1. Scale factors for derived compressor parameters.

Line # | Eq. # | Parameter Proportionality Seale Factor
variable f constant f
1 | 30 |cCoil volume Vom Wt | oistonny consistency
w/(D;;:D}) and D*/(fs) & K K & K
2 18 | Power <W,,> = fsD? < K™
3 29 | Current density | = fs K° (ideal X°) K"
4 22 | Clearance gap 1, = [L,fsD]"? K K
5 46 | Radial stiffness k, = Nzw/D, o }
6 44 | Axial stiffness k, = Nw1}D} K? K*
7 47 | Radial/Axial stiffness kJk, = (DJ1)* K° (ideal K% | 1/K (ideal K°)
8 43 | Maximum spring stress 0. = 15D} K° (ideal K% K° (ideal X%
9 8 | Force balance (flexure spring) | 1/2ks = Ngwls/D} K? K
10 8 | Force balance (gap spring) PAcos$ = D* K’ K’
11 8 | Force balance (inertia) 2n%fsm « fism K? (for m=K*) | K3 (for m=<K*?)
12 8 | Force balance (motor force) F,sinf = D? K K?
13 40 | Relative radial deflection C,=ARjt, = mj(kt,) K (ideal K°) K° (ideal KX
14 - | Relative axial deflection Azjs = m(ks) K (ideal X% | 1/K'? (ideal K°)
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much larger than 1. This set of scaling laws is estimated to be good over the range of
0.25<K<2.0. With a baseline design of <W,> = 350 W, these scale factors are good for the
range of <W,,> between 3 W and 4 kW. Because the stroke and spring dimensions have
different scale factors, a finite element analysis of the new spring will be necessary in this case.
Likewise the different scale factors for the coil width and the coil diameters may require a new
finite element analysis of the magnet and iron assembly to be certain of the magnetic field in the
air gap of the new design. For K>2, the ratio D/D, =K' may cause the piston diameter to
become relatively large compared with the coil outer diameter.

CONCLUSIONS

A set of design equations has been derived to determine the optimum geometry (minimum
size and mass) for a linear compressor using flexure springs. Input variables are desired
performance parameters such as compressor PV power, frequency, average pressure, pressure
ratio, pressure-to-volume phase angle, and compressor efficiency. The set of equations derived
here easily show how these performance parameters affect the compressor design. These
equations need to be supplemented by finite element calculations for the accurate and detailed
design of the magnet system and the flexure springs. The equations were used to develop a set
of scaling laws of the compressor system that is useful for changing the size of a previously
designed compressor with a minimum number of design changes. These scaling laws should be
valid over at least the range of 3 W to 4 kW of compressor PV power.

NOMENCLATURE
A cross-sectional area of the piston C, ratio of radial displacement to
A, cross-sectional area of air gap clearance gap length
A, cross-sectional area of return iron C, ratio of axial spring force to inertial
A, cross-sectional area of magnet force
A, cross-sectional area of piston shaft D diameter of piston
A, cross-sectional area of coil wire D, inner diameter of outer clamp ring
b coefficient of viscous drag for flexure spring
B magnetic field in air gap E Young's modulus
B, maximum magnetic field in iron f operating frequency
b, ratio of air gap to coil volume F,,  motor force
(BH),. maximum energy product of g gravitational constant
magnetic material H, demagnetizing force in the magnet at
b, scaling factor for imperfections in the the operating point
magnetic circuit i (-1)*
Co scaling factor for magnetic losses I wire current
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k, total radial spring constant of flexure Veo compressor swept volume (V_= s4)
springs vV, volumetric flow rate in compressor
k, total axial spring constant of flexure Ve air gap volume
springs Ve permanent magnet volume
J current density (//4,) v, wire volume (L, A4,)
L, length of the clearance seal w width of the clearance seal (w=nD for
L, length of air gap an annular gap)
L, length of magnet w, width of coil
L, length of spring arm W, width of air gap
L. length of wire in coil W, width of magnet
m mass of the piston assembly <W,> compressor power lost to flow
N, number of flexure springs ) through the clearance gap
4 packing fraction (V,/V,) Wpy  instantaneous compressor PV power
P instantaneous pressure <W,,> time-averaged compressor PV power
P, average system pressure w, width of spring arm
P, amplitude of the dynamic pressure in z spacial position of the piston
the compression space F piston velocity
Py, amplitude of the dynamic pressure in 2 acceleration of the piston
the bounce space Z, flow impedance
P, pressure ratio (maximum pressure / B phase angle between piston position
minimum pressure) and -P,
AP pressure drop through clearance seal N compressor efficiency
<Q> time-averaged joule heating in coil 0 angle between the motor force and
R coil wire total resistance the imaginary axis
s stroke of piston i working fluid dynamic viscosity
E thickness of clearance gap P wire material resistivity
t, flexure spring thickness ® angular frequency, w=2=nf
L~ coil volume ¢ phase angle between the position and
Vi volumetric flow rate through the dynamic pressure
clearance gap
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