In the petroleum industry, there is direct contact among oil, gases, and water in many steps of petroleum exploitation and refining operations. The main constituent of the natural gas is methane, presenting on its composition 95 % of this substance. To design and optimize these operations a correct characterization of the phase equilibrium is essential, which depends on accurate experimental data and thermodynamic models. So, the main goal of this work was the experimental measurement of methane solubility in water and hexadecane, since this organic compound has properties similar to the average properties of Brazilian heavy oil. The experimental conditions used were a temperature range from (303.2 to 323.2) K and a low pressure range from (60.8 to 638.5) kPa. Moreover, the results were correlated using the best thermodynamic model, the Peng-Robinson equation of state for both phases with original mixing rules, to describe the behavior of the systems, demonstrating satisfactory bubble-point calculation.
Compounds
#
Formula
Name
1
CH4
methane
2
C16H34
hexadecane
3
H2O
water
Datasets
The table above is generated from the ThermoML associated json file (link above).
POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied;
the numbers refer to the table of compounds on the left.