Thermodynamics Research Center / ThermoML | Journal of Chemical and Engineering Data

Physical Properties of Selected Ionic Liquids for Use as Electrolytes and Other Industrial Applications

Fletcher, S. I., Sillars, F. B.[Fiona B.], Hudson, N. E.[Nicholas E.], Hall, P. J.[Peter J.]
J. Chem. Eng. Data 2010, 55, 2, 778-782
ABSTRACT
The physical properties of selected room temperature ionic liquids (RTILs) were measured using differential scanning calorimetry, du Nouy tensiometry, and rheometry primarily to determine their suitability for use in electrochemical double layer capacitors. RTILs have other uses, however, such as liquid-liquid extraction, catalysis, and heat transfer, and these measurements may also be of use to researchers working in other fields. The ionic liquids used were 1-ethyl-3-methylimidazolium dicyanamide [emim][N(CN)2], 1,2-dimethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide [dmpim][Tf2N], and 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate [bmpyr][Pf3PF3]. Glass transition temperatures, crystallization and melting temperatures, surface tensions, and viscosities are reported. The three ionic liquids displayed a range of crystallization behaviors when cooled to 123.15 K and reheated to 403.15 K. All liquids were Newtonian over a range of shear rates from (10 to 1000) s-1. Viscosities decreased with temperature, and this has been modeled using the Williams-Landel-Ferry equation.
Compounds
# Formula Name
1 C8H11N5 1-ethyl-3-methylimidazolium dicyanamide
2 C10H15F6N3O4S2 1,2-dimethyl-3-propylimidazolium bis[(trifluoromethyl)sulfonyl]imide
3 C15H20F18NP 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate
4 C6H11BF4N2 1-ethyl-3-methylimidazolium tetrafluoroborate
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Triple point temperature, K ; Glass
  • Glass
  • Liquid
  • Air at 1 atmosphere
  • DTA
  • 1
  • POMD
  • 1
  • Normal melting temperature, K ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DTA
  • 1
  • POMD
  • 1
  • Surface tension liquid-gas, N/m ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Air at 1 atmosphere
  • RINGTE:UFactor:8
  • 1
  • POMD
  • 1
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Cone and plate viscometry
  • 16
  • POMD
  • 2
  • Triple point temperature, K ; Glass
  • Glass
  • Liquid
  • Air at 1 atmosphere
  • DTA
  • 1
  • POMD
  • 2
  • Normal melting temperature, K ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DTA
  • 1
  • POMD
  • 2
  • Surface tension liquid-gas, N/m ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Air at 1 atmosphere
  • RINGTE:UFactor:8
  • 1
  • POMD
  • 2
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Cone and plate viscometry
  • 16
  • POMD
  • 3
  • Triple point temperature, K ; Glass
  • Glass
  • Liquid
  • Air at 1 atmosphere
  • DTA
  • 1
  • POMD
  • 3
  • Normal melting temperature, K ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DTA
  • 1
  • POMD
  • 3
  • Surface tension liquid-gas, N/m ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Air at 1 atmosphere
  • RINGTE:UFactor:8
  • 1
  • POMD
  • 3
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Cone and plate viscometry
  • 16
  • POMD
  • 4
  • Surface tension liquid-gas, N/m ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Air at 1 atmosphere
  • RINGTE:UFactor:8
  • 1
  • POMD
  • 4
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Cone and plate viscometry
  • 16