In this study, the solubility of azelaic acid in supercritical carbon dioxide has been measured at 313.15 K and 333.15 K over a pressure range of 10 MPa to 30 MPa. A flow-type, dynamic apparatus was used, and the solubility was obtained gravimetrically. The solubility ranged from an azelaic acid mole fraction of 0.42*10-6 (333.15 K, 10.0 MPa) to 10.12*10-6 (333.15 K, 26.7 MPa). The solubility results showed that the crossover point occurred at a pressure between 17 MPa and 20 MPa; at pressures below the crossover pressure, the solubility decreased with increasing temperatures, whereas the opposite was observed beyond the crossover pressure. No solubility data for azelaic acid in any supercritical fluids were found in the literature; thus, there was no reference to compare these results. Two model types were used to correlate the data: density-based models and an equation-of-state (EoS) model. The Chrastil and the modified Mendez-Santiago and Teja (density-based) models were used, and excellent fits were obtained. The Peng-Robinson EoS with standard van der Waals mixing rules was used also with excellent results.
Compounds
#
Formula
Name
1
C9H16O4
1,9-nonanedioic acid
2
CO2
carbon dioxide
Datasets
The table above is generated from the ThermoML associated json file (link above).
POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied;
the numbers refer to the table of compounds on the left.
Type
Compound-#
Property
Variable
Constraint
Phase
Method
#Points
POMD
1
2
Mole fraction - 1 ; Fluid (supercritical or subcritical phases)
Temperature, K; Fluid (supercritical or subcritical phases)
Pressure, kPa; Fluid (supercritical or subcritical phases)