Thermodynamics Research Center / ThermoML | Journal of Chemical and Engineering Data

Density, Viscosity, Speed of Sound, Bulk Modulus, and Surface Tension of Binary Mixtures of n-Heptane + 2,2,4-Trimethylpentane at (293.15 to 338.15) K and 0.1 MPa

Luning Prak, D.[Dianne], Cowart, J.[Jim], Trulove, P.[Paul]
J. Chem. Eng. Data 2014, 59, 11, 3842-3851
ABSTRACT
In this work, the physical properties of binary mixtures of n-heptane and 2,2,4-trimethylpentane were measured. Density and speed of sound were measured at temperatures ranging from (293.15 to 338.15) K, and viscosity was measured at temperatures ranging from (293.15 to 333.15) K. At 298.15 K, pure component values for heptane of 679.61 kg*m 3, 0.389 mPa*s, and 1130.1 m*s 1 for density, viscosity, and speed of sound, respectively, agree with literature values. Similarly for 2,2,4-trimethylpentane, the values of 687.70 kg*m 3, 0.501 mPa*s, and 1081.7 m*s 1 for density, viscosity, and speed of sound, respectively, agree with literature values. Density mole fraction and temperature data were fit to a second-order polynomial. Bulk moduli ranged from (551.7 to 907.1) MPa over (293.15 to 338.15) K. Viscosity mole fraction data were fit using the three-body McAllister model, while the viscosity deviations were fit to a Redlich Kister type equation. For the mixtures, an increase in mole fraction of 2,2,4-trimethylpentane resulted in an increase in density and viscosity and in a decrease in speed of sound, bulk modulus, and surface tension. Increases in temperature decreased density, viscosity, speed of sound, and bulk modulus. At room temperature, the surface tension values ranged from (18.7 to 20.3) mN*m 1. These data can be used by researchers who are modeling the combustion process of mixtures of primary reference fuels and are modeling the physical properties of fuels.
Compounds
# Formula Name
1 C7H16 heptane
2 C8H18 2,2,4-trimethylpentane
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 10
  • POMD
  • 1
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 10
  • POMD
  • 1
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Falling or rolling sphere viscometry
  • 8
  • POMD
  • 1
  • Surface tension liquid-gas, N/m ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Air at 1 atmosphere
  • Pendant drop shape
  • 1
  • POMD
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 11
  • POMD
  • 2
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 11
  • POMD
  • 2
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Falling or rolling sphere viscometry
  • 8
  • POMD
  • 2
  • Surface tension liquid-gas, N/m ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Air at 1 atmosphere
  • Pendant drop shape
  • 1
  • POMD
  • 1
  • 2
  • Mass density, kg/m3 ; Liquid
  • Mole fraction - 2; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 111
  • POMD
  • 1
  • 2
  • Speed of sound, m/s ; Liquid
  • Mole fraction - 2; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 111
  • POMD
  • 1
  • 2
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Falling or rolling sphere viscometry
  • 88
  • POMD
  • 1
  • 2
  • Surface tension liquid-gas, N/m ; Liquid
  • Mole fraction - 2; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Air at 1 atmosphere
  • Pendant drop shape
  • 9