Thermodynamics Research Center / ThermoML | Journal of Chemical and Engineering Data

Volumetric Properties of Binary Mixtures of 1-Butyl-3-Methylimidazolium Tris(pentafluoroethyl)trifluorophosphate with N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide, and N,N-Dimethylacetamide from (293.15 to 323.15) K

Vranes, M.[Milan], Tot, A.[Aleksandar], Zec, N.[Nebojsa], Papovic, S.[Snezana], Gadzuric, S.[Slobodan]
J. Chem. Eng. Data 2014, 59, 11, 3372-3379
ABSTRACT
Volumetric properties of 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([BMIM][FAP]) ionic liquid binary mixtures with two protic amides: N-methyl-formamide (NMF) and N-ethylformamide (NEF), and three aprotic amides: N,N-dimethylformamide (DMF), N,N-dibutylformamide (DBF), and N,N-dimethylacetamide (DMA), are calculated from the experimental densities and reported in the temperature range from (293.15 to 323.15) K and at atmospheric pressure (0.1 MPa) over the whole composition range. The excess molar volumes have positive values in the whole concentration range, with maximum values in the range between 0.3 and 0.6 ionic liquid mole fraction. Higher values of excess molar volumes are observed in the mixtures containing aprotic amides (DMF, DBF, DMA). Also, the molar volume of binary mixtures, the apparent molar volumes, the partial molar volumes of the components, and the partial molar volumes of the components at infinite dilution are calculated. All of the results are compared with those obtained for pyrrolidinium-based ionic liquids with the same anion in the mixtures with the selected amides.
Compounds
# Formula Name
1 C2H5NO N-methylformamide
2 C3H7NO N-ethylformamide
3 C3H7NO dimethylformamide
4 C9H19NO N,N-dibutylformamide
5 C4H9NO N,N-dimethylethanamide
6 C14H15F18N2P 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 7
  • POMD
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 7
  • POMD
  • 3
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 7
  • POMD
  • 4
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 7
  • POMD
  • 5
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 7
  • POMD
  • 6
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 7
  • POMD
  • 1
  • 6
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 6; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 98
  • POMD
  • 3
  • 6
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 6; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 91
  • POMD
  • 2
  • 6
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 6; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 84
  • POMD
  • 4
  • 6
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 6; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 91
  • POMD
  • 5
  • 6
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 6; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 98