Thermodynamics Research Center / ThermoML | Journal of Chemical and Engineering Data

Effect of Ionic Liquids on the Isobaric Vapor-Liquid equilibrium behavior of methanol-methyl ethyl ketone (MEK)

Li, Q.[Qunsheng], Sun, X.[Xueting], Cao, L.[Ling], Wang, B.[Baohua], Chen, Z.[Zhaowen], Zhang, Y.[Yuxin]
J. Chem. Eng. Data 2013, 58, 5, 1133-1140
ABSTRACT
Isobaric vapor liquid equilibrium (VLE) data for methanol methyl ethyl ketone (MEK) systems containing ionic liquids (ILs) have been measured with a modified Othmer still at atmospheric pressure (101.32 kPa), and they were correlated by the NRTL equation. Three ILs, composed of an anion tetrafluoroborate ([BF4]-) and a cation from 1-ethyl-3-methylimidazolium ([EMIM]+), over 1-butyl-3-methylimidazolium ([BMIM]+), to 1-octyl-3-methylimidazolium ([OMIM]+), were investigated, and they all gave rise to a change of the relative volatility of methanol to MEK. The results indicated that, among the three ILs studied, [BMIM]+[BF4]- and [OMIM]+[BF4]- eliminated the azeotropic point at mole fraction 30 % and 10 %, respectively, whereas IL [EMIM]+[BF4]- pulled down the azeotropic point. The influence of the variation of the cation s alkyl chain length of imidazolium tetrafluoroborate-based ILs on VLE of the azeotropic system methanol MEK was discussed.
Compounds
# Formula Name
1 C6H11BF4N2 1-ethyl-3-methylimidazolium tetrafluoroborate
2 C8H15BF4N2 1-butyl-3-methylimidazolium tetrafluoroborate
3 C12H23BF4N2 1-methyl-3-octylimidazolium tetrafluoroborate
4 CH4O methanol
5 C4H8O butanone
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 4
  • 5
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 4; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 18
  • POMD
  • 4
  • 5
  • Mole fraction - 4 ; Gas
  • Mole fraction - 4; Liquid
  • Pressure, kPa; Liquid
  • Gas
  • Liquid
  • Chromatography
  • 18
  • POMD
  • 4
  • 5
  • 1
  • Mole fraction - 4 ; Gas
  • Mole fraction - 4; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Gas
  • Gas
  • Liquid
  • Chromatography
  • 30
  • POMD
  • 4
  • 5
  • 1
  • Mole fraction - 5 ; Gas
  • Mole fraction - 4; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Gas
  • Gas
  • Liquid
  • Chromatography
  • 30
  • POMD
  • 4
  • 5
  • 1
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 4; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 30
  • POMD
  • 4
  • 5
  • 2
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 4; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 30
  • POMD
  • 4
  • 5
  • 2
  • Mole fraction - 4 ; Gas
  • Mole fraction - 4; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Gas
  • Gas
  • Liquid
  • Chromatography
  • 30
  • POMD
  • 4
  • 5
  • 2
  • Mole fraction - 5 ; Gas
  • Mole fraction - 4; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Gas
  • Gas
  • Liquid
  • Chromatography
  • 30
  • POMD
  • 4
  • 5
  • 3
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 4; Liquid
  • Mole fraction - 3; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 31
  • POMD
  • 4
  • 5
  • 3
  • Mole fraction - 4 ; Gas
  • Mole fraction - 4; Liquid
  • Mole fraction - 3; Liquid
  • Pressure, kPa; Gas
  • Gas
  • Liquid
  • Chromatography
  • 31
  • POMD
  • 4
  • 5
  • 3
  • Mole fraction - 5 ; Gas
  • Mole fraction - 4; Liquid
  • Mole fraction - 3; Liquid
  • Pressure, kPa; Gas
  • Gas
  • Liquid
  • Chromatography
  • 31