Thermodynamics Research Center / ThermoML | Journal of Chemical and Engineering Data

Isobaric Heat Capacity Measurements of Liquid Methane, Ethane, and Propane by Differential Scanning Calorimetry at High Pressures and Low Temperatures

Syed, T.[Tauqir], Hughes, T. J.[Thomas J.], Marsh, K. N.[Kenneth N.], May, E. F.[Eric F.]
J. Chem. Eng. Data 2012, 57, 12, 3573-3580
ABSTRACT
A commercial differential scanning calorimeter (DSC) was adapted to allow accurate isobaric heat capacity, cp, measurements of cryogenic, high-pressure liquids. At (subcritical) temperatures between (108.15 and 258.15) K and pressures between (1.1 and 6.35) MPa, the standard deviation in the measured cp values was 0.005*cp for methane, 0.01*cp for ethane, and 0.015*cp for propane, which is comparable to both the scatter of cp data for these liquids measured using other techniques and with the scatter of those data sets about the reference equation of state (EOS) values. Three key modifications to the commercial DSC were required to enable these accurate cryogenic, high-pressure liquid cp measurements. First, methods of loading and removing the liquid from the calorimeter without moving the sample cell were developed and tested with high boiling temperature liquids; this modification improved the measurement repeatability. Second, a ballast volume containing a high-pressure vapor phase at constant temperature was connected to the DSC cell so that the liquid sample s thermal expansion did not cause significant changes in pressure. A third modification was required because the boil-off vapor from the liquid nitrogen used to cool the calorimeter resulted in a temperature inversion, and hence convection, along the tubing connecting the DSC s sample cell to the ballast volume, that lead to an unstable calorimetric signal at T greater than 130 K. The modifications to the specialized DSC were tested by measuring cp values for heptane, methylbenzene, and a heptane (1) + methylbenzene (2) mixture with x1 = 0.38 at atmospheric pressure and temperatures of (228.15, 238.15, 303.15, and 313.15) K. The measured values had relative deviations from those measured adiabatically by Holzhauer and Ziegler (J. Phys. Chem. 1975, 79, 590 604) of less than 0.006*cp, indicating that the specialized DSC could be used for liquids and liquid mixtures at conditions relevant to liquefied natural gas production.
Compounds
# Formula Name
1 CH4 methane
2 C2H6 ethane
3 C3H8 propane
4 C7H16 heptane
5 C7H8 toluene
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Molar heat capacity at constant pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Large sample (1 g) DSC
  • 13
  • POMD
  • 2
  • Molar heat capacity at constant pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Large sample (1 g) DSC
  • 16
  • POMD
  • 3
  • Molar heat capacity at constant pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Large sample (1 g) DSC
  • 34
  • POMD
  • 4
  • Molar heat capacity at constant pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Large sample (1 g) DSC
  • 8
  • POMD
  • 5
  • Molar heat capacity at constant pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Large sample (1 g) DSC
  • 8
  • POMD
  • 5
  • 4
  • Molar heat capacity at constant pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Mole fraction - 5; Liquid
  • Liquid
  • Large sample (1 g) DSC
  • 4