Thermodynamics Research Center / ThermoML | Journal of Chemical and Engineering Data

Thermodynamic and Topological Studies of 1-Ethyl-3-methylimidazolium Tetrafluoroborate + Pyrrolidin-2-one and 1-Methyl-pyrrolidin-2-one Mixtures

Sharma, D.[Dimple], Bhagour, S.[Soniya], Sharma, V. K.
J. Chem. Eng. Data 2012, 57, 12, 3488-3497
ABSTRACT
Excess molar enthalpies, HE of 1-ethyl-3-methylimidazolium tetrafluoroborate (1) + pyrrolidin-2-one or 1-methyl pyrrolidin-2-one (2) binary mixtures at 298.15 K, densities, ?, and speeds of sound, u, data of the same mixtures at (293.15, 298.15, 303.15, and 308.15) K have been measured over entire mole fraction range. The observed densities and speeds of sound data have been utilized to determine their excess molar volumes, VE, and excess isentropic compressibilities, ?SE. The topology of the constituents of mixtures (graph theory) has been employed to calculate the VE, HE, and ?SE of ionic liquid mixtures. The analysis of the measured data in terms of graph theory suggests that investigated (1 + 2) mixtures are characterized by interactions forming a 1:1 molecular complex, and VE, HE, and ?SE values calculated by graph theory are close to the experimental ones
Compounds
# Formula Name
1 C6H11BF4N2 1-ethyl-3-methylimidazolium tetrafluoroborate
2 C5H9NO N-methylpyrrolidone
3 C4H7NO 2-pyrrolidinone
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 4
  • POMD
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 4
  • POMD
  • 2
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 4
  • POMD
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 4
  • POMD
  • 3
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 4
  • POMD
  • 3
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 4
  • POMD
  • 3
  • 1
  • Excess molar enthalpy (molar enthalpy of mixing), kJ/mol ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Calvet calorimetry
  • 18
  • POMD
  • 3
  • 1
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 72
  • POMD
  • 3
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 72
  • POMD
  • 2
  • 1
  • Excess molar enthalpy (molar enthalpy of mixing), kJ/mol ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Calvet calorimetry
  • 18
  • POMD
  • 2
  • 1
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 72
  • POMD
  • 2
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 72