Thermodynamics Research Center / ThermoML | Journal of Chemical and Engineering Data

Physical Properties of N-Butylpyridinium Tetrafluoroborate and N-Butylpyridinium Bis(trifluoromethylsulfonyl)imide Binary Ionic Liquid Mixtures

Larriba, M.[Marcos], Garcia, S.[Silvia], Navarro, P.[Pablo], Garcia, J.[Julian], Rodriguez, F.[Francisco]
J. Chem. Eng. Data 2012, 57, 4, 1318-1325
ABSTRACT
The use of the N-butylpyridinium tetrafluoroborate ([bpy][BF4]) + N-butylpyridinium bis(trifluoromethylsulfonyl)imide ([bpy][Tf2N]) binary ionic liquid mixture as an aromatic extraction solvent has recently been proposed. To establish the potential of this mixture to be applied in an aromatic separation process, its physical properties must be measured. In this work, refractive indices, densities, and viscosities of this binary ionic liquid mixture have been determined over the temperature range from (303.15 to 353.15) K at atmospheric pressure. A comparison between the physical properties of the sulfolane and the properties gathered in this work has also been performed. The Bingham mixing rule has successfully estimated the viscosities of the IL mixtures from viscosity data of pure ILs. The accuracy of the group contribution method proposed by Ye and Shreeve and extended by Gardas and Coutinho in predicting densities of pyridinium-based IL mixtures has been studied. Refractive index deviations, excess molar volumes, and viscosity deviations have been correctly fitted to Redlich Kister polynomial equations.
Compounds
# Formula Name
1 C9H14BF4N 1-butylpyridinium tetrafluoroborate
2 C11H14F6N2O4S2 1-butylpyridinium bis[(trifluoromethyl)sulfonyl]imide
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Refractive index (Na D-line) ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Standard Abbe refractometry
  • 6
  • POMD
  • 1
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Falling or rolling sphere viscometry
  • 6
  • POMD
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 6
  • POMD
  • 2
  • Refractive index (Na D-line) ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Standard Abbe refractometry
  • 6
  • POMD
  • 2
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Falling or rolling sphere viscometry
  • 6
  • POMD
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 6
  • POMD
  • 2
  • 1
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Falling or rolling sphere viscometry
  • 72
  • POMD
  • 2
  • 1
  • Refractive index (Na D-line) ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Standard Abbe refractometry
  • 72
  • POMD
  • 2
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 72