Thermodynamics Research Center / ThermoML | Journal of Chemical and Engineering Data

Vapor-Liquid Equilibrium Data for the Nitrogen + Dodecane System at Temperatures from (344 to 593) K and at Pressures up to 60 MPa

Garcia-Cordova, T.[Tomas], Justo-Garcia, D. N.[Daimler N.], Garcia-Flores, B. E.[Blanca E.], Garcia-Sanchez, F.[Fernando]
J. Chem. Eng. Data 2011, 56, 4, 1555-1564
ABSTRACT
A static-analytical apparatus with visual sapphire windows and pneumatic capillary samplers has been used to obtain new vapor-liquid equilibrium data for the N2 + C12H26 system over the temperature range from (344 to 593) K and at pressures up to 60 MPa. Equilibrium phase compositions and vapor-liquid equilibrium ratios are reported. All of the measured vapor-liquid equilibrium data were subject to a thermodynamic consistency test of high-pressure vapor-liquid equilibrium data involving the calculation of the vapor-phase composition from the isothermal pressure liquid phase composition data. The consistency test showed that most of the data are thermodynamically consistent. The new results were compared with solubility data reported by other authors. The comparison showed that the vapor-liquid equilibrium data obtained in this study are in good agreement with those reported in the literature. The experimental data were modeled with the PR (Peng-Robinson) and PC-SAFT (perturbed-chain statistical associating fluid theory) equations of state by using one-fluid mixing rules and a single temperature-independent interaction parameter. Results of the modeling indicated that the PC-SAFT equation of state represents better the measured data of the N2 + C12H26 system over the whole temperature, pressure, and composition range studied.
Compounds
# Formula Name
1 N2 nitrogen
2 C12H26 dodecane
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 2
  • 1
  • Vapor or sublimation pressure, kPa ; Liquid
  • Mole fraction - 1; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Closed cell (Static) method
  • 169
  • POMD
  • 2
  • 1
  • Mole fraction - 1 ; Gas
  • Mole fraction - 1; Liquid
  • Temperature, K; Liquid
  • Gas
  • Liquid
  • Chromatography
  • 169