This paper contains the results of new measurements of the thermal conductivity of mixtures of water and 2-n-butoxyethanol in the liquid phase within the temperature range of (304 to 346) K at pressures up to 150 MPa. The measurements were carried out with a transient hot-wire instrument and have an accuracy of +- 0.3 %. The investigation is the first conducted at high pressures on partially miscible mixtures whose components are of greatly differing thermal conductivity. It therefore provides a severe test of the methods of representing the thermal conductivity of liquid mixtures that are based on the hard-sphere theory of transport in liquids. It is shown that all of the experimental data may be represented to within +- 6 % by a predictive procedure based on the hard-sphere theory of liquids. However, a more detailed analysis of the results reveals small but systematic deviations from the universal behavior of the thermal conductivity as a function of molar volume that the predictive procedure and the hard-sphere theory have as their basis.
Compounds
#
Formula
Name
1
H2O
water
2
C6H14O2
2-butoxyethan-1-ol
Datasets
The table above is generated from the ThermoML associated json file (link above).
POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied;
the numbers refer to the table of compounds on the left.