Thermodynamics Research Center / ThermoML | Journal of Chemical and Engineering Data

Excess Molar Entalpies of Dimethyl Carbonate with o-Xylene, m-Xylene, p-Xylene, Ethylbenzene, or Ethyl Benzoate at 298.15 K

Lien, P.-J.[Pei-Jung], Lin, H.[Ho-mu], Lee, M. J.[Ming-Jer], Venkatesu, P.[Pannuru]
J. Chem. Eng. Data 2003, 48, 1, 110-113
ABSTRACT
Excess molar enthalpies, HE for the binary mixtures of dimethyl carbonate with o-xylene, m-xylene, p-xylene, ethylbenzene, or ethyl benzoate have been measured by using a flow-type isothermal microcalorimeter at 298.15 K under atmospheric pressure. The experimental HE values are all positive (endothermic) for these binary mixtures over the entire composition range. The maximum HE values are in the range 386.6 Jmol' to 674.0 Jmo1' and are exhibited at about x1 = 0.5, except for the systems containing ethylbenzene and ethyl benzoate. The experimental results were represented accurately by the Redlich-Kister polynomial equation. These new HE data were also correlated with the Peng-Robinson and the cubic chain-of-rotators (CCOR) equations of state. With two adjustable interaction parameters, the CCOR equation represents the excess enthalpies of these five binary systems satisfactorily.
Compounds
# Formula Name
1 C3H6O3 dimethyl carbonate
2 C8H10 1,2-dimethylbenzene
3 C8H10 1,3-dimethylbenzene
4 C8H10 1,4-dimethylbenzene
5 C8H10 ethylbenzene
6 C9H10O2 ethyl benzoate
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 1
  • POMD
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 1
  • POMD
  • 3
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 1
  • POMD
  • 4
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 1
  • POMD
  • 5
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 1
  • POMD
  • 6
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 1
  • POMD
  • 2
  • 1
  • Excess molar enthalpy (molar enthalpy of mixing), kJ/mol ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Flow calorimetry
  • 19
  • POMD
  • 3
  • 1
  • Excess molar enthalpy (molar enthalpy of mixing), kJ/mol ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Flow calorimetry
  • 19
  • POMD
  • 4
  • 1
  • Excess molar enthalpy (molar enthalpy of mixing), kJ/mol ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Flow calorimetry
  • 19
  • POMD
  • 5
  • 1
  • Excess molar enthalpy (molar enthalpy of mixing), kJ/mol ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Flow calorimetry
  • 19
  • POMD
  • 6
  • 1
  • Excess molar enthalpy (molar enthalpy of mixing), kJ/mol ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Flow calorimetry
  • 19