Thermodynamics Research Center / ThermoML | Journal of Chemical and Engineering Data

Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5

Prak, Dianne J. Luning, Fries, Julia M., Gober, Rochelle T., Vozka, Petr, Kilaz, Gozdem, Johnson, Theodore R., Graft, Sahara L., Trulove, Paul C., Cowart, Jim S.
J. Chem. Eng. Data 2019, 64, 4, 1725-1745
ABSTRACT
The composition of Navy Jet fuel JP-5 was determined using gas chromatography(GC)-electron impact mass spectrometry and GC*GC/(Flame ionization detection) to contain by mass 21 % linear alkanes, 29 % cycloalkanes, 32 % isoalkanes, and 18 % aromatic compounds. Various quaternary mixtures of n-dodecane, n-butylcyclohexane, nbutylbenzene, and 2,2,4,4,6,8,8-heptamethylnonane were prepared as possible surrogates for this jet fuel and analyzed for density and viscosity (253 to 333 K), speed of sound (288 to 333 K), surface tension (294 +- 1 K), and flashpoint. Relative percent deviation cutoffs for matching the JP-5 based on previous studies and fuel specification were: +- 1.7 % for density, +- 1 % for speed of sound, +- 3.5 % for bulk modulus, +- 2.6 % for viscosity, +- 2.2 % for surface tension, and +- 10 % for flash point (minimum of 333 K). Seven quaternary mixtures met these cut-offs. Three had compositions that were comparable to the JP-5 and would be good candidates for engine testing. All mixture excess molar volumes showed a trend of increasing, reaching a plateau, and then decreasing as the concentration of n-butylbenzene increased. Viscosity deviations were at most +- 0.12 mPa*s and decreased with increasing temperature.
Compounds
# Formula Name
1 C12H26 dodecane
2 C10H20 butylcyclohexane
3 C10H14 butylbenzene
4 C16H34 2,2,4,4,6,8,8-heptamethylnonane
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 7
  • POMD
  • 1
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Concentric cylinders viscometry
  • 5
  • POMD
  • 1
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • Single path-length method
  • 7
  • POMD
  • 1
  • Surface tension liquid-gas, N/m ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Pendant drop shape
  • 1
  • POMD
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 8
  • POMD
  • 2
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Concentric cylinders viscometry
  • 6
  • POMD
  • 2
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • Single path-length method
  • 7
  • POMD
  • 2
  • Surface tension liquid-gas, N/m ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Pendant drop shape
  • 1
  • POMD
  • 3
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 8
  • POMD
  • 3
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Concentric cylinders viscometry
  • 6
  • POMD
  • 3
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • Single path-length method
  • 7
  • POMD
  • 3
  • Surface tension liquid-gas, N/m ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Pendant drop shape
  • 1
  • POMD
  • 4
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 16
  • POMD
  • 4
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Concentric cylinders viscometry
  • 6
  • POMD
  • 4
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • Single path-length method
  • 7
  • POMD
  • 4
  • Surface tension liquid-gas, N/m ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Pendant drop shape
  • 1
  • POMD
  • 2
  • 3
  • 4
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 2; Liquid
  • Mole fraction - 3; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 7
  • POMD
  • 2
  • 3
  • 4
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 2; Liquid
  • Mole fraction - 3; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Concentric cylinders viscometry
  • 5
  • POMD
  • 2
  • 3
  • 4
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 2; Liquid
  • Mole fraction - 3; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • Single path-length method
  • 7
  • POMD
  • 2
  • 3
  • 4
  • Surface tension liquid-gas, N/m ; Liquid
  • Mole fraction - 2; Liquid
  • Mole fraction - 3; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Pendant drop shape
  • 1
  • POMD
  • 1
  • 2
  • 3
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 24
  • POMD
  • 1
  • 2
  • 3
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Concentric cylinders viscometry
  • 12
  • POMD
  • 1
  • 2
  • 3
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • Single path-length method
  • 21
  • POMD
  • 1
  • 2
  • 3
  • Surface tension liquid-gas, N/m ; Liquid
  • Mole fraction - 1; Liquid
  • Mole fraction - 2; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Pendant drop shape
  • 3
  • POMD
  • 1
  • 2
  • 4
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 8
  • POMD
  • 1
  • 2
  • 4
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Concentric cylinders viscometry
  • 6
  • POMD
  • 1
  • 2
  • 4
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • Single path-length method
  • 7
  • POMD
  • 1
  • 2
  • 4
  • Surface tension liquid-gas, N/m ; Liquid
  • Mole fraction - 1; Liquid
  • Mole fraction - 2; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Pendant drop shape
  • 1
  • POMD
  • 1
  • 3
  • 4
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Mole fraction - 3; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 8
  • POMD
  • 1
  • 3
  • 4
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Mole fraction - 3; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Concentric cylinders viscometry
  • 6
  • POMD
  • 1
  • 3
  • 4
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Mole fraction - 3; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • Single path-length method
  • 7