Thermodynamics Research Center / ThermoML | Journal of Chemical and Engineering Data

Volumetric, Compressibility, Viscometric, and 1H NMR Analysis on Drug-Bile Salts Interactions in Aqueous Medium: Temperature and Concentration Effect

Chauhan, Suvarcha, Singh, Kuldeep
J. Chem. Eng. Data 2019, 64, 1, 69-82
ABSTRACT
The knowledge on different kinds of intermolecular interactions present in drug-bile salts system has been procured from volumetric, compressibility, and viscometric studies. The measured density ( ) , speed of sound (u ) , and viscosity ( ) of sodium salt of cholic acid and deoxycholic acid namely sodium cholate (NaC) and sodium deoxycholate (NaDC) respectively, in aqueous solutions of metformin hydrochloride (an antidiabetic drug) has been meticulously used to calculate various parameters that are known to give valuable information on presence of different types of interactions in mixture. The alteration in the strength of such interactions by temperature and concentration has also been analyzed by varying temperature from 293.15 K to 313.15 K at regular interval of 5 K and drug concentrations (0.005, 0.010, and 0.050 mol*kg-1). The variations in enumerated parameters have been interpreted by applying well known co-sphere overlap model that confirms the presence of significant amount of hydrophobic/electrostatic interactions between drug and bile salts. From this, the dominance of electrostatic and hydrophobic interactions at low and high bile salt content respectively has been observed in the system. Moreover, the knowledge on interactions has been strengthened by 1H-NMR spectroscopic studies. The interactional knowledge may be considered to be helpful in order to increase the use of bile salts (as penetration enhancer) in pharmaceutical world.
Compounds
# Formula Name
1 C24H39NaO5 sodium cholate
2 C24H39NaO4 sodium deoxycholate
3 C4H12ClN5 N,N-dimethylimidodicarbonimidic diamide hydrochloride
4 H2O water
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 4
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 5
  • POMD
  • 4
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • Single path-length method
  • 5
  • POMD
  • 4
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 5
  • POMD
  • 1
  • 3
  • 4
  • Mass density, kg/m3 ; Liquid
  • Solvent: Molality, mol/kg - 3; Liquid
  • Temperature, K; Liquid
  • Molality, mol/kg - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 260
  • POMD
  • 1
  • 3
  • 4
  • Speed of sound, m/s ; Liquid
  • Solvent: Molality, mol/kg - 3; Liquid
  • Temperature, K; Liquid
  • Molality, mol/kg - 1; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • Single path-length method
  • 260
  • POMD
  • 1
  • 3
  • 4
  • Viscosity, Pa*s ; Liquid
  • Solvent: Molality, mol/kg - 3; Liquid
  • Temperature, K; Liquid
  • Molality, mol/kg - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 260
  • POMD
  • 2
  • 3
  • 4
  • Mass density, kg/m3 ; Liquid
  • Solvent: Molality, mol/kg - 3; Liquid
  • Temperature, K; Liquid
  • Molality, mol/kg - 2; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 260
  • POMD
  • 2
  • 3
  • 4
  • Speed of sound, m/s ; Liquid
  • Solvent: Molality, mol/kg - 3; Liquid
  • Temperature, K; Liquid
  • Molality, mol/kg - 2; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • Single path-length method
  • 260
  • POMD
  • 2
  • 3
  • 4
  • Viscosity, Pa*s ; Liquid
  • Solvent: Molality, mol/kg - 3; Liquid
  • Temperature, K; Liquid
  • Molality, mol/kg - 2; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 260
  • POMD
  • 1
  • 4
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Molality, mol/kg - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 60
  • POMD
  • 1
  • 4
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Molality, mol/kg - 1; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • Single path-length method
  • 60
  • POMD
  • 1
  • 4
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Molality, mol/kg - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 60
  • POMD
  • 3
  • 4
  • Mass density, kg/m3 ; Liquid
  • Molality, mol/kg - 3; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 15
  • POMD
  • 3
  • 4
  • Speed of sound, m/s ; Liquid
  • Molality, mol/kg - 3; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • Single path-length method
  • 15
  • POMD
  • 3
  • 4
  • Viscosity, Pa*s ; Liquid
  • Molality, mol/kg - 3; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 18
  • POMD
  • 2
  • 4
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Molality, mol/kg - 2; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 60
  • POMD
  • 2
  • 4
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Molality, mol/kg - 2; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • Single path-length method
  • 60
  • POMD
  • 2
  • 4
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Molality, mol/kg - 2; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 60