Thermodynamics Research Center / ThermoML | Journal of Chemical and Engineering Data

Isobaric Vapor-liquid Equilibrium for Three Binary Systems of Ethyl Acetate + Propyl Acetate, Ethyl Acetate + Propylene Carbonate, and Propyl Acetate + Propylene Carbonate at 101.3 kPa

Liu, Xiaobin, Zhang, Yukai, Li, Min, Li, Xin, Li, Guoxuan, Wang, Yinglong, Gao, Jun
J. Chem. Eng. Data 2018, 63, 5, 1588-1595
ABSTRACT
In this work, the isobaric vapor-liquid equilibrium (VLE) data for ethyl acetate + propyl acetate, ethyl acetate + propylene carbonate and propyl acetate+ propylene carbonate systems were measured at the pressure of 101.3 kPa by a modified Rose vapor recirculating type equilibrium still. The experimental results show that no azeotrope was detected between the three binary systems. Two thermodynamic consistency tests of Herington and van Ness were employed to check the experimental data, respectively. The measured VLE data were correlated by Wilson, UNIQUAC, and NRTL models. The calculated RMSD values of the equilibrium temperature and vapor phase mole fractions are not more than 1.07 and 0.0113, respectively. The relative volatilities were calculated and the deviations between the experiment data and Wilson model calculations were compared. All the correlated results are in good aggrement with the measured data. Meanwhile, the binary interaction parameters were regressed by the three models for all the binary systems.
Compounds
# Formula Name
1 C4H8O2 ethyl acetate
2 C5H10O2 propyl ethanoate
3 C4H6O3 4-methyl-1,3-dioxolan-2-one
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 1
  • POMD
  • 1
  • Boiling temperature at pressure P, K ; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 1
  • POMD
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 1
  • POMD
  • 2
  • Boiling temperature at pressure P, K ; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 1
  • POMD
  • 3
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 1
  • POMD
  • 3
  • Boiling temperature at pressure P, K ; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 1
  • POMD
  • 1
  • 2
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 13
  • POMD
  • 1
  • 2
  • Mole fraction - 1 ; Gas
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Gas
  • Liquid
  • Chromatography
  • 13
  • POMD
  • 1
  • 3
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 22
  • POMD
  • 1
  • 3
  • Mole fraction - 1 ; Gas
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Gas
  • Liquid
  • Chromatography
  • 22
  • POMD
  • 2
  • 3
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 17
  • POMD
  • 2
  • 3
  • Mole fraction - 2 ; Gas
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Gas
  • Liquid
  • Chromatography
  • 17