Thermodynamics Research Center / ThermoML | Journal of Chemical and Engineering Data

Solubility Measurement and Thermodynamic Modeling of N-(4-Methylphenyl-Z-3-chloro-2-(phenylthio)propenamide in 12 Pure Solvents at Temperatures Ranging from 278.15 to 318.15 K

Souza, Brian de, Keshavarz, Leila, Steendam, Rene R. E., Dennehy, Olga C., Lynch, Denis, Collins, Stuart G., Moynihan, Humphrey A., Maguire, Anita R., Frawley, Patrick J.
J. Chem. Eng. Data 2018, 63, 5, 1419-1428
ABSTRACT
-Thio--chloroacrylamides are of considerable synthetic utility due to their versatile reactivity profile enabling a diverse range of useful transformations. Availability of accurate and extensive solubility data and models is a pre-requisite for advanced process optimization of such valuable pure synthetic intermediate compounds, in particular facilitating their isolation with a high degree of efficiency and control. As an illustrative example the solubility of one such derivative, N-(4-methylphenyl-Z-3chloro-2-(phenylthio)propenamide (Z-1), is described in the present work. Solubility data is reported in twelve pure solvents specifically selected for their potential utility in synthesis and isolation at scale. Solubility data is determined using the gravimetric method across a range of temperatures T= (278.15 to 318.15) K under pressure of 0.1 MPa. On a molar basis, the solubility of Z-1 at temperature T=298.15 K was observed to follow the order: tetrahydrofuran greater than 1,2-dichloroethane greater than 2-methyltetrahydrofuran greater than butanone greater than acetone greater than ethyl acetate greater than methyl acetate greater than toluene greater than tert-butyl methyl ether greater than acetonitrile greater than 2-propanol greater than 2-methyl-2-butanol. The experimental solubility data were correlated by the modified Apelblat, Margules, Van-Laar, Wilson and NRTL models. The NRTL model was found to result in the lowest error for eight of the twelve solvents tested. In the case of acetonitrile, the Wilson model had a slightly lower mean square error of 3.52x10-4 while for methyl acetate and 1,2-dichloroethane the Van-Laar model had the smallest mean square error of 1.47x10-3 and 3.54x10-4 respectively. The provision of solubility data and models for such a prized and versatile compound will assist with further development of continuous isolation strategies.
Compounds
# Formula Name
1 C16H14ClNOS (Z)-3-chloro-2-phenylthio-N-(p-tolyl)acrylamide
2 C3H6O acetone
3 C2H3N acetonitrile
4 C4H8O butanone
5 C4H8O2 ethyl acetate
6 C3H6O2 methyl ethanoate
7 C5H12O 2-methoxy-2-methylpropane
8 C4H8O tetrahydrofuran
9 C7H8 toluene
10 C2H4Cl2 1,2-dichloroethane
11 C5H10O 2-methyltetrahydrofuran
12 C5H12O 2-methylbutan-2-ol
13 C3H8O propan-2-ol
14 C8H9NO2 N-acetyl-p-aminophenol
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Normal melting temperature, K ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DTA
  • 1
  • POMD
  • 1
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DSC
  • 1
  • POMD
  • 1
  • 2
  • Mole fraction - 1 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • gravimetric
  • 9
  • POMD
  • 1
  • 3
  • Mole fraction - 1 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • gravimetric
  • 9
  • POMD
  • 1
  • 4
  • Mole fraction - 1 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • gravimetric
  • 9
  • POMD
  • 1
  • 5
  • Mole fraction - 1 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • gravimetric
  • 9
  • POMD
  • 1
  • 6
  • Mole fraction - 1 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • gravimetric
  • 9
  • POMD
  • 1
  • 7
  • Mole fraction - 1 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • gravimetric
  • 9
  • POMD
  • 1
  • 8
  • Mole fraction - 1 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • gravimetric
  • 9
  • POMD
  • 1
  • 9
  • Mole fraction - 1 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • gravimetric
  • 9
  • POMD
  • 1
  • 10
  • Mole fraction - 1 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • gravimetric
  • 9
  • POMD
  • 1
  • 12
  • Mole fraction - 1 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • gravimetric
  • 9
  • POMD
  • 1
  • 11
  • Mole fraction - 1 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • gravimetric
  • 9
  • POMD
  • 1
  • 13
  • Mole fraction - 1 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • gravimetric
  • 9
  • POMD
  • 14
  • 13
  • Mole fraction - 14 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 14
  • gravimetric
  • 2
  • POMD
  • 14
  • 2
  • Mole fraction - 14 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 14
  • gravimetric
  • 2