Thermodynamics Research Center / ThermoML | Journal of Chemical and Engineering Data

Deterpenation of Citrus Essential Oils Using Glycerol-Based Deep Eutectic Solvents

Ozturk, Baranse, Esteban, Jesus, Gonzalez-Miquel, Maria
J. Chem. Eng. Data 2018, 63, 7, 2384-2393
ABSTRACT
Citrus essential oils are complex hydrocarbon mixtures mainly composed of terpenes and terpenoids, which are widely used as raw materials in food, pharmaceutical and fine chemical industries. However, essential oil deterpenation (i.e., separation of terpenes and terpenoids) is required to preserve the quality of the final product for practical applications. Currently, there is a need to find efficient and environmentally friendly solvents to replace the harmful volatile organic compounds that are conventionally used as extraction solvents. Therefore, alternative solvents with more benign and environmentally friendly characteristics to develop sustainable citrus essential oil deterpenation processes are crucial. In this work, biorenewable deep eutectic solvents (DES) composed of glycerol (Gly) and choline chloride (ChCl) are evaluated as sustainable solvents for citrus essential oil deterpenation, using model mixtures and real citrus crude orange essential oils (COEO). The liquid-liquid equilibrium data of the deterpenation process were obtained at 298.15 K and 101.3 kPa and compared against the predicted results from COnductor-like Screening Model for Real Solvents (COSMO-RS), and the solvent performance was evaluated in terms of the distribution coefficient and selectivity values. The effect of solvent composition (i.e. hydrogen bond acceptor/donor ratio) and the addition of water (pure DES vs. diluted DES) were also explored. Overall results indicate the feasibility of using DES as extraction solvents for citrus essential oil deterpenation, with pure ChCl:Gly 1:2 providing the highest extraction yield, while addition of water decreased the distribution coefficient but increased the selectivity of the process.
Compounds
# Formula Name
1 C10H16 (R)-1-methyl-4-(1-methylethenyl)cyclohexene
2 C10H18O 3,7-dimethyl-1,6-octadien-3-ol
3 C2H6O ethanol
4 C3H8O3 glycerol
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 1
  • POMD
  • 1
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Falling or rolling sphere viscometry
  • 1
  • POMD
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 1
  • POMD
  • 2
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Falling or rolling sphere viscometry
  • 1
  • POMD
  • 3
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 1
  • POMD
  • 3
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Falling or rolling sphere viscometry
  • 1
  • POMD
  • 4
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 1
  • POMD
  • 4
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Falling or rolling sphere viscometry
  • 1