Thermodynamics Research Center / ThermoML | Journal of Chemical and Engineering Data

Experimental Vapor-Liquid Equilibria and Thermodynamic Modeling of the Methanol + n-Heptane and 1-Butanol + Aniline Binary Systems

Alinejhad, Mehran, Shariati, Alireza, Hekayati, Javad
J. Chem. Eng. Data 2018, 63, 4, 965-971
ABSTRACT
In this study, isobaric vapor-liquid equilibria (VLE) of the binary systems of methanol + nheptane and 1-butanol + aniline were measured at 85 kPa. The experiments were carried out using an Othmer still with the objective of measuring the equilibrium temperature, as well as the composition of the vapor and liquid phases as determined by gas chromatography analysis. According to the experimental results obtained, both of the binary mixtures studied demonstrate positive deviation from ideal behavior. Furthermore, a point of minimum-boiling azeotrope was observed for the methanol + n-heptane system. The VLE data measured have been verified to be thermodynamically consistent based on the Wisniak modification of the Herington area test for isobaric VLE data. Additionally, the two systems were thermodynamically modeled. Because of the relatively low pressure involved in this work, the modified Raoult s law was utilized for this purpose. In this regard, the experimental vapor-liquid equilibrium data were correlated with different excess Gibbs energy models, including the Wilson, the nonrandom two-liquid (NRTL), and the universal quasi-chemical (UNIQUAC) activity coefficient models. The results obtained show reasonably good agreement with the experimental data.
Compounds
# Formula Name
1 C7H16 heptane
2 C4H10O butan-1-ol
3 C6H7N aniline
4 CH4O methanol
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Vapor or sublimation pressure, kPa ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 1
  • POMD
  • 2
  • Vapor or sublimation pressure, kPa ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 1
  • POMD
  • 3
  • Vapor or sublimation pressure, kPa ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 1
  • POMD
  • 4
  • Vapor or sublimation pressure, kPa ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 1
  • POMD
  • 4
  • 1
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 4; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 22
  • POMD
  • 4
  • 1
  • Mole fraction - 4 ; Gas
  • Mole fraction - 4; Liquid
  • Pressure, kPa; Liquid
  • Gas
  • Liquid
  • Chromatography
  • 22
  • POMD
  • 2
  • 3
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 21
  • POMD
  • 2
  • 3
  • Mole fraction - 2 ; Gas
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Gas
  • Liquid
  • Chromatography
  • 21