Thermodynamics Research Center / ThermoML | Journal of Chemical and Engineering Data

Thermodynamics of the Antiviral and Antiparkinsonian Drug Amantadine Hydrochloride: Condensed State Properties and Decomposition

Bazyleva, A.[Ala], Blokhin, A. V.[Andrey V.], Zaitsau, D. H.[Dzmitry H.], Kabo, G. J.[Gennady J.], Paulechka, E.[Eugene], Kazakov, A.[Andrei], Shaw, J. M.[John M.]
J. Chem. Eng. Data 2017, 62, 9, 2666-2675
ABSTRACT
Heat capacities of the antiviral and antiparkinsonian drug amantadine hydrochloride in the crystalline state were measured by adiabatic and differential scanning calorimetry in the temperature range from 5 K to 470 K. Two unresolved low-enthalpy solid-to-solid phase transitions with peak maxima at 120.0 K and 123.1 K were detected. Thermodynamic functions for crystalline amantadine hydrochloride were derived from the data obtained. Decomposition of amantadine hydrochloride was studied by the Knudsen effusion method. Quantum chemical calculations supported completeness of the amantadine hydrochloride ionic pair disintegration under the effusion conditions. A data treatment model considering the difference in effusion rates of the decomposition products, anisotropy failure in the vicinity of the orifice, and vapor undersaturation in the effusion cell was developed. Thermodynamic parameters for the decomposition were thus derived and shown to be consistent with available literature data on decomposition of similar organic hydrochlorides and with the entropy of reaction calculated directly from the entropies of the decomposition reaction participants. The obtained set of thermodynamic properties of the medication is expected to provide new key information necessary for optimization of production and storage conditions.
Compounds
# Formula Name
1 C10H17N tricyclo(3.3.1.1:3,7)decan-1-amine
2 ClH hydrogen chloride
3 C10H18ClN 1-aminoadamantane hydrochloride
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 3
  • Triple point temperature, K ; Crystal 3
  • Crystal 3
  • Crystal 2
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 3
  • Triple point temperature, K ; Crystal 2
  • Crystal 2
  • Crystal 1
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 3
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal 3
  • Crystal 3
  • Crystal 2
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 3
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal 2
  • Crystal 2
  • Crystal 1
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 3
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal 3
  • Temperature, K; Crystal 3
  • Pressure, kPa; Crystal 3
  • Crystal 3
  • Small (less than 1 g) adiabatic calorimetry
  • 121
  • POMD
  • 3
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Pressure, kPa; Crystal 2
  • Crystal 2
  • Small (less than 1 g) adiabatic calorimetry
  • 12
  • POMD
  • 3
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • Small (less than 1 g) adiabatic calorimetry
  • 221
  • POMD
  • 3
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • Small sample (50 mg) DSC
  • 102
  • POMD
  • 3
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal 3
  • Temperature, K; Crystal 3
  • Pressure, kPa; Crystal 3
  • Crystal 3
  • Small (less than 1 g) adiabatic calorimetry
  • 17
  • POMD
  • 3
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Crystal 3
  • Temperature, K; Crystal 3
  • Pressure, kPa; Crystal 3
  • Crystal 3
  • Small (less than 1 g) adiabatic calorimetry
  • 17
  • POMD
  • 3
  • Molar entropy, J/K/mol ; Crystal 3
  • Temperature, K; Crystal 3
  • Pressure, kPa; Crystal 3
  • Crystal 3
  • Small (less than 1 g) adiabatic calorimetry
  • 17
  • POMD
  • 3
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Pressure, kPa; Crystal 2
  • Crystal 2
  • Small (less than 1 g) adiabatic calorimetry
  • 2
  • POMD
  • 3
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Pressure, kPa; Crystal 2
  • Crystal 2
  • Small (less than 1 g) adiabatic calorimetry
  • 2
  • POMD
  • 3
  • Molar entropy, J/K/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Pressure, kPa; Crystal 2
  • Crystal 2
  • Small (less than 1 g) adiabatic calorimetry
  • 2
  • POMD
  • 3
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • Small (less than 1 g) adiabatic calorimetry
  • 27
  • POMD
  • 3
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • Small (less than 1 g) adiabatic calorimetry
  • 27
  • POMD
  • 3
  • Molar entropy, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • Small (less than 1 g) adiabatic calorimetry
  • 27
  • POMD
  • 3
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • Small sample (50 mg) DSC
  • 10
  • POMD
  • 3
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • Small sample (50 mg) DSC
  • 10
  • POMD
  • 3
  • Molar entropy, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • Small sample (50 mg) DSC
  • 10
  • RXND
  • 3
  • 1
  • 2
  • Thermodynamic equilibrium constant
  • Dynamic equilibration
  • 11