Thermodynamics Research Center / ThermoML | Journal of Chemical and Engineering Data

Diffusion Coefficients of Carbon Dioxide in Eight Hydrocarbon Liquids at Temperatures between (298.15 and 423.15) K at Pressures up to 69 MPa

Cadogan, S. P.[Shane P.], Mistry, B.[Bhavik], Wong, Y.[Yat], Maitland, G. C.[Geoffrey C.], Trusler, J. P. M. [J. P. Martin]
J. Chem. Eng. Data 2016, 61, 11, 3922-3932
ABSTRACT
We report experimental measurements of the mutual diffusion coefficients in binary systems comprising CO2 + liquid hydrocarbon measured at temperatures between (298.15 and 423.15) K and at pressures up to 69 MPa. The hydrocarbons studied were the six normal alkanes hexane, heptane, octane, decane, dodecane and hexadecane, one branched alkane, 2,6,10,15,19,23-hexamethyltetracosane (squalane), and methylbenzene (toluene). The measurements were performed by the Taylor dispersion method at effectively infinite dilution of CO2 in the alkane, and the results have a typical standard relative uncertainty of 2.6%. Pressure was found to have a major impact, reducing the diffusion coefficient at a given temperature by up to 55% over the range of pressures investigated. A correlation based on the Stokes Einstein model was investigated in which the effective hydrodynamic radius of CO2 was approximated by a linear function of the reduced molar volume of the solvent. This represented the data for the normal alkanes only with an average absolute relative deviation (AAD) of 5%. A new universal correlation, based on the rough-hard-sphere theory, was also developed which was able to correlate all the experimental data as a function of reduced molar volume with an AAD of 2.5%.
Compounds
# Formula Name
1 CO2 carbon dioxide
2 C6H14 hexane
3 C7H16 heptane
4 C8H18 octane
5 C10H22 decane
6 C12H26 dodecane
7 C16H34 hexadecane
8 C30H62 2,6,10,15,19,23-hexamethyltetracosane
9 C7H8 toluene
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 2
  • 1
  • Binary diffusion coefficient, m2/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Mole fraction - 1; Liquid
  • Liquid
  • Taylor dispersion method
  • 16
  • POMD
  • 1
  • 3
  • Binary diffusion coefficient, m2/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Mole fraction - 1; Liquid
  • Liquid
  • Taylor dispersion method
  • 30
  • POMD
  • 4
  • 1
  • Binary diffusion coefficient, m2/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Mole fraction - 1; Liquid
  • Liquid
  • Taylor dispersion method
  • 30
  • POMD
  • 5
  • 1
  • Binary diffusion coefficient, m2/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Mole fraction - 1; Liquid
  • Liquid
  • Taylor dispersion method
  • 16
  • POMD
  • 6
  • 1
  • Binary diffusion coefficient, m2/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Mole fraction - 1; Liquid
  • Liquid
  • Taylor dispersion method
  • 15
  • POMD
  • 1
  • 7
  • Binary diffusion coefficient, m2/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Mole fraction - 1; Liquid
  • Liquid
  • Taylor dispersion method
  • 27
  • POMD
  • 8
  • 1
  • Binary diffusion coefficient, m2/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Mole fraction - 1; Liquid
  • Liquid
  • Taylor dispersion method
  • 30
  • POMD
  • 9
  • 1
  • Binary diffusion coefficient, m2/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Mole fraction - 1; Liquid
  • Liquid
  • Taylor dispersion method
  • 30