The molar enthalpies of mixing for binary systems of choline chloride (chcl)/urea deep eutectic solvents (mole ratios of 1:1.5, 1:2, and 1:2.5) with water were measured at 308.15 and 318.15 K under atmospheric pressure with an isothermal calorimeter. The binary mixture of (chcl/urea (1:2.5) + water) showed endothermic behavior over the entire range of compositions, while the binary mixtures of (chcl/urea (1:1.5) + water) and (chcl/urea (1:2) + water) showed endothermic behavior first and then was changed to be exothermic with increasing content of deep eutectic solvents. The Redlich Kister (RK) equation and the nonrandom two-liquid (NRTL) model were used to fit experimental molar enthalpies of mixing. The NRTL model with the fitted parameters was further used to predict the vapor pressure for the three systems and was compared with the experimental data from literature. For the binary mixtures of (chcl/urea (1:2) + water), the predicted vapor pressure agreed well with the experimental data only when the temperature was lower than 333.15 K and the mole fraction of chcl/urea (1:2) was lower than 0.1. Otherwise, the deviation increased greatly with an increase of the amount of chcl/urea (1:2).
Compounds
#
Formula
Name
1
C5H14ClNO
choline chloride
2
CH4N2O
urea
3
H2O
water
Datasets
The table above is generated from the ThermoML associated json file (link above).
POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied;
the numbers refer to the table of compounds on the left.
Type
Compound-#
Property
Variable
Constraint
Phase
Method
#Points
POMD
2
1
3
Molar enthalpy of mixing with solvent, kJ/mol - 3 ; Liquid
Temperature, K; Liquid
Mole fraction - 3; Liquid
Solvent: Amount ratio of component to other component of binary solvent - 2; Liquid