Thermodynamics Research Center / ThermoML | Journal of Chemical and Engineering Data

Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of Butylcyclohexane with Toluene or n-Hexadecane

Prak, D. J. L.[Dianne J. Luning]
J. Chem. Eng. Data 2016, 61, 10, 3595-3606
ABSTRACT
The viscosities and densities ((293.15 to 353.15) K), speeds of sound ((293.15 to 333.15) K), surface tensions (room temperature), and flash points were measured for binary mixtures of n-butylcyclohexane with either toluene or n-hexadecane. Increasing the temperature decreased the densities, and the excess molar volumes of the mixtures were generally positive, suggesting increased spacing due to differences in packing and intermolecular forces. Increasing the temperature also decreased the viscosities, and the McAllister three-body model successfully modeled the viscosity with the larger fitting term corresponding to two molecules of the more viscous substance. The mixture surface tensions and flash points fell between the pure-component values, which ranged from (26.7 to 28.6) mN*m 1 and (324.7 to 406.2) K, respectively. The speed of sound decreased with increasing mole fraction of n-butylcycylohexane in n-hexadecane, but several speed of sound values for mixtures of n-butylcyclohexane and toluene were lower than those of either component. For both sets of mixtures, the isentropic bulk moduli of several mixtures were lower than those of their components. These results show that simple blending rules cannot be used to predict the speed of sound and bulk modulus of these mixtures.
Compounds
# Formula Name
1 C7H8 toluene
2 C10H20 butylcyclohexane
3 C16H34 hexadecane
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 7
  • POMD
  • 1
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 5
  • POMD
  • 1
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Concentric cylinders viscometry
  • 7
  • POMD
  • 1
  • Surface tension liquid-gas, N/m ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Sessile Drop
  • 1
  • POMD
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 7
  • POMD
  • 2
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 5
  • POMD
  • 2
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Concentric cylinders viscometry
  • 7
  • POMD
  • 2
  • Surface tension liquid-gas, N/m ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Sessile Drop
  • 1
  • POMD
  • 3
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 7
  • POMD
  • 3
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 5
  • POMD
  • 3
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Concentric cylinders viscometry
  • 9
  • POMD
  • 3
  • Surface tension liquid-gas, N/m ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Sessile Drop
  • 1
  • POMD
  • 1
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mass fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 63
  • POMD
  • 1
  • 2
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 45
  • POMD
  • 1
  • 2
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Concentric cylinders viscometry
  • 77
  • POMD
  • 1
  • 2
  • Surface tension liquid-gas, N/m ; Liquid
  • Mole fraction - 2; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Sessile Drop
  • 8
  • POMD
  • 3
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mass fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 63
  • POMD
  • 3
  • 2
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 45
  • POMD
  • 3
  • 2
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Concentric cylinders viscometry
  • 77
  • POMD
  • 3
  • 2
  • Surface tension liquid-gas, N/m ; Liquid
  • Mole fraction - 2; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Sessile Drop
  • 9