Thermodynamics Research Center / ThermoML | Journal of Chemical and Engineering Data

Calorimetric Study of Triphenylbismuth Dimethacrylate Ph3Bi(O2CCMe-CH2)2

Letyanina, I. A.[Irina A.], Markin, A. V.[Alexey V.], Gushchin, A. V.[Alexey V.], Smirnova, N. N.[Natalia N.], Klimova, M. N.[Marina N.], Kalistratova, O. S.[Olga S.]
J. Chem. Eng. Data 2016, 61, 7, 2321-2329
ABSTRACT
In the present research, the heat capacities of triphenylbismuth dimethacrylate Ph3Bi(O2CCMe-CH2)2 were measured between T = 5.3 and 330 K with the precision adiabatic vacuum calorimeter and from T = 310 to 420 K with the differential scanning calorimeter. There revealed a reproducible anomaly from 150 to 170 K caused by structural changes in the crystal lattice, and intensive exothermic transition over the range from T = 385 to 420 K caused by the reductive decomposition with the polymerization of the sample under study. The experimental results were used to calculate the standard (p = 0.1 MPa) thermodynamic functions (heat capacity Cp,mo, enthalpy Hmo(T) Hmo(0), entropy Smo(T), and Gibbs energy Fmo(T) of crystalline triphenylbismuth dimethacrylate from T ? 0 to 385 K. The standard entropy of formation at T = 298.15 K was calculated for the compound under study in the crystalline state. Obtained for Ph3Bi(O2CCMe-CH2)2 results were compared with ones for Ph3Sb(O2CCMe-CH2)2.
Compounds
# Formula Name
1 C26H25BiO4 bis(methacryloyloxy)triphenylbismuth
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Triple point temperature, K ; Crystal 2
  • Crystal 2
  • Crystal 1
  • Air at 1 atmosphere
  • Adiabatic calorimetry
  • 1
  • POMD
  • 1
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal 2
  • Crystal 2
  • Crystal 1
  • Air at 1 atmosphere
  • Adiabatic calorimetry
  • 1
  • POMD
  • 1
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Pressure, kPa; Crystal 2
  • Crystal 2
  • Small (less than 1 g) adiabatic calorimetry
  • 138
  • POMD
  • 1
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • Small (less than 1 g) adiabatic calorimetry
  • 63
  • POMD
  • 1
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Pressure, kPa; Crystal 2
  • Crystal 2
  • Small (less than 1 g) adiabatic calorimetry
  • 21
  • POMD
  • 1
  • Molar enthalpy, kJ/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Pressure, kPa; Crystal 2
  • Crystal 2
  • Small (less than 1 g) adiabatic calorimetry
  • 21
  • POMD
  • 1
  • Molar entropy, J/K/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Pressure, kPa; Crystal 2
  • Crystal 2
  • Small (less than 1 g) adiabatic calorimetry
  • 21
  • POMD
  • 1
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • Small (less than 1 g) adiabatic calorimetry
  • 24
  • POMD
  • 1
  • Molar enthalpy, kJ/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • Small (less than 1 g) adiabatic calorimetry
  • 24
  • POMD
  • 1
  • Molar entropy, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • Small (less than 1 g) adiabatic calorimetry
  • 24
  • POMD
  • 1
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • Small sample (50 mg) DSC
  • 76