Thermodynamics Research Center / ThermoML | Thermochimica Acta

Development of thermal enhanced n-octadecane/porous nano carbon-based materials using 3-step filtered vacuum impregnation method

Lee, Jongki, Wi, Seunghwan, Jeong, Su-Gwang, Chang, Seong Jin, Kim, Sumin
Thermochim. Acta 2017, 655, 194-201
ABSTRACT
In this study, n-octadecane/porous nano carbon-based materials (OPNCs) were thermally enhanced using a 3- step filtered vacuum impregnation method. n-octadecane as phase change materials (PCMs) and supporting materials of C-300, C-500, Activated carbon (AC), Expanded graphite (EG) and Exfoliated graphite nanoplatelets (xGnP) made of the same raw material. Through scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) analysis, n-octadecane was well impregnated in carbon-based materials not a chemical bonding. Thermal conductivities of OPNCs were increased up to 580% compared with n-octadecane by TCi. Dfferential scanning calorimetry (DSC) analysis was used to verify thermal performance of OPNCs, the latent heat capacities of OPNCs were measured from 220J/g to 393J/g. Analysis of thermal stability by thermogravimetric analysis (TGA) showed that the impregnation ratio of OPNCs was about 56% and that of EG was 88.53%. 3-step filtered vacuum impregnation method manufactured a stable and thermally enhanced OPNCs.
Compounds
# Formula Name
1 C18H38 octadecane
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Normal melting temperature, K ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DTA
  • 1
  • POMD
  • 1
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DSC
  • 1
  • POMD
  • 1
  • Thermal conductivity, W/m/K ; Crystal
  • Temperature, K; Crystal
  • Pressure, kPa; Crystal
  • Crystal
  • Modified Transient Plane Source method
  • 1