Thermodynamics Research Center / ThermoML | Thermochimica Acta

Enthalpies of fusion and enthalpies of solvation of aromatic hydrocarbons derivatives: Estimation of sublimation enthalpies at 298.15K

Solomonov, B. N.[Boris N.], Nagrimanov, R. N.[Ruslan N.], Varfolomeev, M. A.[Mikhail A.], Buzyurov, A. V.[Aleksey V.], Mukhametzyanov, T. A.[Timur. A.]
Thermochim. Acta 2016, 627-629, 77-82
ABSTRACT
Enthalpy of sublimation of solid compound can be found using the values of solution enthalpy and solvation enthalpy in any solvent. In this work enthalpies of solution atinfinite dilution of a number of aromatic hydrocarbons derivatives in benzene were measured at 298.15K. Comparison between experimental and literature solution enthalpies in benzene at 298.15K and fusion enthalpies at melting temperature of aromatic hydrocarbon derivatives showed, that these values are approximately equal. Thereby, fusion enthalpies at melting temperature can be used instead of their solution enthalpies in benzene at 298.15K for calculation of sublimation enthalpies at 298.15K. Solvation enthalpies in benzene at 298.15K required for this procedure were calculated using group additivity scheme. The sublimation enthalpies of 80 aromatic hydrocarbons derivatives at 298.15K were evaluated as a difference between fusion enthalpies at melting temperature and solvation enthalpies in benzene at 298.15K. Obtained in this work values of sublimation enthalpy at 298.15K for studied compounds were in a good agreement with available literature data.
Compounds
# Formula Name
1 C6H4I2 1,3-diiodobenzene
2 C6H4I2 1,4-diiodobenzene
3 C6H4ClNO2 1-chloro-4-nitrobenzene
4 C8H4N2 1,2-benzodinitrile
5 C10H10O4 dimethyl 1,4-benzenedicarboxylate
6 C7H6N2O4 2,4-dinitrotoluene
7 C10H7NO2 1-nitronaphthalene
8 C14H9NO2 9-nitroanthracene
9 C6H6 benzene
10 ClK potassium chloride
11 H2O water
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 10
  • 11
  • Molar enthalpy of solution, kJ/mol ; Liquid
  • Mole fraction - 10; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Power-compensation calorimetry
  • 1
  • POMD
  • 9
  • 1
  • Molar enthalpy of solution, kJ/mol ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Power-compensation calorimetry
  • 1
  • POMD
  • 9
  • 2
  • Molar enthalpy of solution, kJ/mol ; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Power-compensation calorimetry
  • 1
  • POMD
  • 9
  • 3
  • Molar enthalpy of solution, kJ/mol ; Liquid
  • Mole fraction - 3; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Power-compensation calorimetry
  • 1
  • POMD
  • 9
  • 4
  • Molar enthalpy of solution, kJ/mol ; Liquid
  • Mole fraction - 4; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Power-compensation calorimetry
  • 1
  • POMD
  • 9
  • 5
  • Molar enthalpy of solution, kJ/mol ; Liquid
  • Mole fraction - 5; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Power-compensation calorimetry
  • 1
  • POMD
  • 9
  • 6
  • Molar enthalpy of solution, kJ/mol ; Liquid
  • Mole fraction - 6; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Power-compensation calorimetry
  • 1
  • POMD
  • 9
  • 7
  • Molar enthalpy of solution, kJ/mol ; Liquid
  • Mole fraction - 7; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Power-compensation calorimetry
  • 1
  • POMD
  • 9
  • 8
  • Molar enthalpy of solution, kJ/mol ; Liquid
  • Mole fraction - 8; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Power-compensation calorimetry
  • 1