Thermodynamics Research Center / ThermoML | Thermochimica Acta

Thermodynamic properties of cyclohexanamines: Experimental and theoretical study

Verevkin, S. P.[Sergey P.], Emel'yanenko, V. N.[Vladimir N.]
Thermochim. Acta 2015, 608, 40-48
ABSTRACT
Vapor pressures of cyclohexanamine, N-methyl-cyclohexanamine, N,N-dimethyl-cyclohexanamine, and N-cyclohexyl-cyclohexanamine were measured using the transpiration method. Molar enthalpies of vaporization of cyclohexanamine derivatives were derived from vapor pressure temperature dependences. Thermodynamic data on cyclohexanamine derivatives available in the literature were collected and treated uniformly. Consistency of the experimental data was proved with a group- contribution method and quantum-chemical calculations. Evaluated vaporization and formation enthalpies of cyclohexanamine derivatives were recommended for practical thermochemical calculations.
Compounds
# Formula Name
1 C6H13N cyclohexylamine
2 C7H15N N-methylcyclohexylamine
3 C8H17N N,N-dimethylcyclohexylamine
4 C12H23N N-cyclohexylcyclohexanamine
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Vapor or sublimation pressure, kPa ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Transpiration method
  • 10
  • POMD
  • 2
  • Vapor or sublimation pressure, kPa ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Transpiration method
  • 14
  • POMD
  • 3
  • Vapor or sublimation pressure, kPa ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Transpiration method
  • 16
  • POMD
  • 4
  • Vapor or sublimation pressure, kPa ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Transpiration method
  • 14