We prepared lauric acid based phase change nanocomposite embedded with chemically functionalized single-walled carbon nanohorns and measured its thermal properties. We report contrasting enhancements in thermal conductivity of such nanocomposites in the solid and liquid phase for the same loading of nanohorn inclusions. Maximum thermal conductivity enhancement in solid and liquid phase at 2 vol% is found to be 37 and 11%, respectively. The nanocomposites thermal conductivity enhancement is compared with calculations of effective medium theory considering the role of interfacial thermal transport. Model calculations show that Kapitza resistance is an order of magnitude lower at the solid solid interface compared to the solid liquid interface. Differential scanning calorimetry study of the nanocomposites shows that the phase change temperature and enthalpy marginally increases to that of pristine material. Such a nanocomposite with enhanced thermal transport and phase change enthalpy makes it a promising candidate for thermal energy storage applications.
Compounds
#
Formula
Name
1
C12H24O2
dodecanoic acid
Datasets
The table above is generated from the ThermoML associated json file (link above).
POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied;
the numbers refer to the table of compounds on the left.
Type
Compound-#
Property
Variable
Constraint
Phase
Method
#Points
POMD
1
Normal melting temperature, K ; Crystal
Crystal
Liquid
Air at 1 atmosphere
DTA:corrimp
1
POMD
1
Molar enthalpy of transition or fusion, kJ/mol ; Crystal