Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Thermal-alteration interphase transformations in natural and synthetic arsenic sulfide polymorphs

Shpotyuk, O.[Oleh], Kozdras, A.[Andrzej], Balaz, P.[Peter], Bujnakova, Z.[Zdenka], Shpotyuk, Y.[Yaroslav]
J. Chem. Thermodyn. 2019, 128, 110-118
ABSTRACT
Thermal-alteration interphase transformations in natural (realgar a-As4S4 of two mineral origins) and synthetic (commercial powdered high-temperature b-As4S4 modification synthesized from elemental constituents and subjected to high-energy mechanical ball milling) arsenic monosulfide polymorphs are studied exploring temperature-modulated DSC TOPEM method. Specific heat capacity and non-reversing heat flow variations in realgar a-As4S4 demonstrate two endothermic events, these being ascribed to interphase a? b transformation at (540 550) K, and melting of this newly-formed high-temperature b-As4S4 phase at 581 582 K. This polymorph originated from thermal alteration of mineral realgar possesses congruent melting in contrast to synthetic b-As4S4 polymorph, which shows non-equilibrium melting due to accompanied generation of compositionallyauthentic amorphous phase. Calorimetric studies on synthetic b-As4S4 in powdered coarse-grained and milled states demonstrate complicated non-equilibrium melting in principally different crystallineamorphous environments along with crystal-to-glass transformation. Structural-chemical heterogeneity of b-As4S4 crystallites results in incongruent double-peak melting through two endothermic events at 578 K and 588 K. The amorphous phase formed under high-energy milling of synthetic b-As4S4 possesses a dual nature due to stabilization of As-rich glassy substances with low- and high-temperature glass transition mid-points. This process in the powdered synthetic b-As4S4, identified as re-amorphization of initial amorphous phase and direct vitrification from b-As4S4 crystallites, was parameterized as compared to calorimetric thermal-alteration events in orpiment As2S3 mineral.
Compounds
# Formula Name
1 As2S3 arsenic(III) sulfide
2 AsS arsenic monosulfide
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Mass density, kg/m3 ; Crystal
  • Temperature, K; Crystal
  • Pressure, kPa; Crystal
  • Crystal
  • X-ray diffraction
  • 1
  • POMD
  • 1
  • Triple point temperature, K ; Crystal 1
  • Crystal 1
  • Liquid
  • Air at 1 atmosphere
  • DSC:UFactor:2
  • 1
  • POMD
  • 1
  • Triple point temperature, K ; Glass
  • Glass
  • Liquid
  • Air at 1 atmosphere
  • DSC:UFactor:2
  • 1
  • POMD
  • 2
  • Triple point temperature, K ; Crystal 2
  • Crystal 2
  • Crystal 1
  • Air at 1 atmosphere
  • DSC:UFactor:2
  • 1
  • POMD
  • 2
  • Triple point temperature, K ; Crystal 1
  • Crystal 1
  • Liquid
  • Air at 1 atmosphere
  • DSC:UFactor:2
  • 1
  • POMD
  • 2
  • Triple point temperature, K ; Crystal 1
  • Crystal 1
  • Liquid
  • Air at 1 atmosphere
  • DSC:UFactor:2
  • 1
  • POMD
  • 2
  • Triple point temperature, K ; Crystal 2
  • Crystal 2
  • Crystal 1
  • Air at 1 atmosphere
  • DSC:UFactor:2
  • 1
  • POMD
  • 2
  • Triple point temperature, K ; Crystal 1
  • Crystal 1
  • Liquid
  • Air at 1 atmosphere
  • DSC:UFactor:2
  • 1
  • POMD
  • 2
  • Triple point temperature, K ; Crystal 1
  • Crystal 1
  • Liquid
  • Air at 1 atmosphere
  • DSC:UFactor:2
  • 1
  • POMD
  • 2
  • Mass density, kg/m3 ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • X-ray diffraction
  • 1
  • POMD
  • 2
  • Mass density, kg/m3 ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • X-ray diffraction
  • 1