Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Volatility and thermodynamic stability of vanillin

Almeida, Ana R.R.P., Freitas, Vera L.S., Campos, Joana I.S., Ribeiro da Silva, Maria D.M.C., Monte, Manuel J.S.
J. Chem. Thermodyn. 2019, 128, 45-54
ABSTRACT
Vanillin is a naturally occurring phenolic aldehyde that is world-wide known for its flavouring properties. This work reports an extensive experimental and computational study of its thermodynamic properties. The vapour pressures of crystalline and liquid phases of vanillin were measured in the following temperature ranges T = (321.0-350.7) K and (324.9-382.3) K respectively, using a static method based on diaphragm capacitance gauge. Additionally, the crystalline vapour pressures were also measured in the temperature interval T = (303.1-325.2) K, using a Knudsen mass-loss effusion technique. The standard molar enthalpies, entropies and Gibbs energies of sublimation and of vaporization, at selected reference temperatures, were derived from the vapour pressure measurements. The enthalpies of vaporization and of sublimation, at T = 298.15 K, were also determined using Calvet microcalorimetry and the standard (pdeg. = 105 Pa) molar enthalpy of formation, in the crystalline phase, at T = 298.15 K, was derived from its standard massic energy of combustion measured by static-bomb combustion calorimetry. From the experimental results, the standard molar enthalpy of formation in the gaseous phase, at T = 298.15 K, was calculated and compared with the values estimated by employing quantum chemical calculations. To analyse the thermodynamic stability of vanillin, the standard Gibbs energies of formation in crystalline and gaseous phases were calculated. The molar enthalpy of fusion determined using DSC is compared with indirect results determined using Calvet microcalorimetry and vapour pressure measurements.
Compounds
# Formula Name
1 CO2 carbon dioxide
2 H2O water
3 O2 oxygen
4 C8H8O3 vanillin
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 4
  • Normal melting temperature, K ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DTA
  • 1
  • POMD
  • 4
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DSC
  • 1
  • POMD
  • 4
  • Molar enthalpy of vaporization or sublimation, kJ/mol ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Static calorimetry
  • 1
  • POMD
  • 4
  • Molar enthalpy of vaporization or sublimation, kJ/mol ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Static calorimetry
  • 1
  • POMD
  • 4
  • Vapor or sublimation pressure, kPa ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Closed cell (Static) method
  • 16
  • POMD
  • 4
  • Vapor or sublimation pressure, kPa ; Metastable liquid
  • Temperature, K; Metastable liquid
  • Metastable liquid
  • Gas
  • Closed cell (Static) method
  • 30
  • POMD
  • 4
  • Vapor or sublimation pressure, kPa ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Calculated from knudsen effusion weight loss
  • 35
  • RXND
  • 4
  • 1
  • 2
  • 3
  • Specific internal energy of reaction at constant volume, J/g
  • Static bomb calorimetry
  • 1