Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Experimental determination of (p,.rho.,T) data for binary mixtures of methane and helium

Hernandez-Gomez, R., Tuma, D., Segovia, J. J., Chamorro, C. R.
J. Chem. Thermodyn. 2016, 96, 1-11
ABSTRACT
The basis for the development and evaluation of equations of state for mixtures is experimental data for several thermodynamic properties. The quality and the availability of experimental data limit the achievable accuracy of the equation. Referring to the fundamentals of GERG-2008 wide-range equation of state, no suitable data were available for many mixtures containing secondary natural gas components. This work provides accurate experimental (p,q,T) data for two binary mixtures of methane with helium (0.95 (amount-of-substance fraction) CH4 + 0.05 He and 0.90 CH4 + 0.10 He). Density measurements were performed at temperatures between (250 and 400) K and pressures up to 20 MPa by using a single-sinker densimeter with magnetic suspension coupling. Experimental data were compared with the corresponding densities calculated from the GERG-2008 and the AGA8-DC92 equations of state. Deviations from GERG-2008 were found within a 2% band for the (0.95 CH4 + 0.05 He) mixture but exceeded the 3% limit for the (0.95 CH4 + 0.05 He) mixture. The highest deviations were observed at T = 250 K and pressures between (17 and 19) MPa. Values calculated from AGA8-DC92, however, deviated from the experimental data by only 0.1% at high pressures and exceeded the 0.2% limit only at temperatures of 300 K and above, for the (0.90 CH4 + 0.10 He) mixture.
Compounds
# Formula Name
1 CH4 methane
2 He helium
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • 2
  • Mass density, kg/m3 ; Gas
  • Temperature, K; Gas
  • Pressure, kPa; Gas
  • Mole fraction - 1; Gas
  • Gas
  • Buoyancy - hydrostatic balance with magnetic suspension - one sinker
  • 279