Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Thermodynamic properties of indan: Experimental and computational results

Chirico, R. D.[Robert D.], Steele, W. V.[William V.], Kazakov, A. F.[Andrei F.]
J. Chem. Thermodyn. 2016, 96, 41-51
ABSTRACT
Measurements leading to the calculation of thermodynamic properties in the ideal-gas state for indan (Chemical Abstracts registry number [496-11-7], 2,3-dihydro-1H-indene) are reported. Experimental methods were adiabatic heat-capacity calorimetry, differential scanning calorimetry, comparative ebulliometry, and vibrating-tube densitometry. Molar thermodynamic functions (enthalpies, entropies, and Gibbs energies) for the condensed and ideal-gas states were derived from the experimental studies at selected temperatures. Statistical calculations were performed based on molecular geometry optimization and vibrational frequencies calculated at the B3LYP/6-31+G(d,p) level of theory. Computed ideal-gas properties derived with the rigid-rotor harmonic-oscillator approximation are shown to be in excellent accord with ideal-gas entropies derived from thermophysical property measurements of this research, as well as with experimental heat capacities for the ideal-gas state reported in the literature. Literature spectroscopic studies and ab initio calculations report a range of values for the barrier to ring puckering. Results of the present work are consistent with a large barrier that allows use of the rigid-rotor harmonic-oscillator approximation for ideal-gas entropy and heat-capacity calculations, even with the stringent uncertainty requirements imposed by the calorimetric and physical property measurements reported here. All experimental results are compared with property values reported in the literature.
Compounds
# Formula Name
1 C9H10 indane
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Triple point temperature, K ; Crystal 1
  • Crystal 1
  • Liquid
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 1
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal 2
  • Crystal 2
  • Crystal 1
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 1
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal 1
  • Crystal 1
  • Liquid
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 1
  • Triple point temperature, K ; Crystal 2
  • Crystal 2
  • Crystal 1
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 1
  • Vapor or sublimation pressure, kPa ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Twin ebulliometer
  • 24
  • POMD
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Vibrating tube method
  • 9
  • POMD
  • 1
  • Molar heat capacity at saturation pressure, J/K/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Crystal 2
  • Gas
  • Vacuum adiabatic calorimetry
  • 14
  • POMD
  • 1
  • Molar entropy, J/K/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Crystal 2
  • Gas
  • Vacuum adiabatic calorimetry
  • 14
  • POMD
  • 1
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Crystal 2
  • Gas
  • Vacuum adiabatic calorimetry
  • 14
  • POMD
  • 1
  • Molar heat capacity at saturation pressure, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Crystal 1
  • Gas
  • Vacuum adiabatic calorimetry
  • 14
  • POMD
  • 1
  • Molar entropy, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Crystal 1
  • Gas
  • Vacuum adiabatic calorimetry
  • 14
  • POMD
  • 1
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Crystal 1
  • Gas
  • Vacuum adiabatic calorimetry
  • 14
  • POMD
  • 1
  • Molar heat capacity at saturation pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Vacuum adiabatic calorimetry
  • 25
  • POMD
  • 1
  • Molar entropy, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Vacuum adiabatic calorimetry
  • 25
  • POMD
  • 1
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Vacuum adiabatic calorimetry
  • 25
  • POMD
  • 1
  • Molar heat capacity at saturation pressure, J/K/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Crystal 2
  • Gas
  • Vacuum adiabatic calorimetry
  • 35
  • POMD
  • 1
  • Molar heat capacity at saturation pressure, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Crystal 1
  • Gas
  • Vacuum adiabatic calorimetry
  • 29
  • POMD
  • 1
  • Molar heat capacity at saturation pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Vacuum adiabatic calorimetry
  • 30
  • POMD
  • 1
  • Molar heat capacity at saturation pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Small sample (50 mg) DSC
  • 16
  • POMD
  • 1
  • Molar entropy, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Small sample (50 mg) DSC
  • 16
  • POMD
  • 1
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Small sample (50 mg) DSC
  • 16