Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Mixing thermodynamic properties of ester-containing solutions: A study on the ternary (methyl alkanoate (pentanoate and methanoate) + methanol) and the corresponding binaries. New contributions to the (ester + ester) interactions

Fernandez, L.[Luis], Ortega, J.[Juan], Perez, N.[Noelia], Toledo, F.[Francisco]
J. Chem. Thermodyn. 2015, 86, 80-89
ABSTRACT
This work studies the volumetric (VE m) and energetic (HE m) properties resulting from the mixing processes of binary systems and the corresponding ternary of two methyl esters (methanoate and pentanoate) with methanol. The three binaries produce net endothermic mixing effects, with important energetic interactions, with maximum values of HE m ffi 400 J mol 1, for the (ester + ester) system. This produces expansive effects VE m greater than 0, but the binaries of the (methyl esters + methanol) give rise to contractions VE m less than 0, due to the formation of molecular aggregates. The endothermicity in the mixing processes is a net effect which is justified by interactions of different nature, especially dipolar interactions and hydrogen bonds of the substances involved. The overall results in the ternary respond to the individual contributions of the binaries and the increment due to the simultaneous presence of the three compounds in the solution. The experimental results are correlated with our own model that gives a good representation of the properties of the solutions studied. The analysis of the behavior of the solutions is reinforced by spectral data obtained by 1H NMR, supporting the structural model established. The application of UNIFAC to estimate the HE m in the ternary improves when one takes into account the individual contributions of the (ester + ester) interactions whose parameter are predetermined.
Compounds
# Formula Name
1 C6H12O2 methyl pentanoate
2 C2H4O2 methyl methanoate
3 CH4O methanol
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Refractive index (Na D-line) ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Standard Abbe refractometry
  • 1
  • POMD
  • 1
  • Mass density, kg/m3 ; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Vibrating tube method
  • 1
  • POMD
  • 2
  • Refractive index (Na D-line) ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Standard Abbe refractometry
  • 1
  • POMD
  • 2
  • Mass density, kg/m3 ; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Vibrating tube method
  • 1
  • POMD
  • 3
  • Refractive index (Na D-line) ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Standard Abbe refractometry
  • 1
  • POMD
  • 3
  • Mass density, kg/m3 ; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Vibrating tube method
  • 1
  • POMD
  • 2
  • 1
  • Mass density, kg/m3 ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Vibrating tube method
  • 19
  • POMD
  • 2
  • 1
  • Excess molar enthalpy (molar enthalpy of mixing), kJ/mol ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Calvet calorimetry
  • 18
  • POMD
  • 3
  • 1
  • Mass density, kg/m3 ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Vibrating tube method
  • 20
  • POMD
  • 3
  • 1
  • Excess molar enthalpy (molar enthalpy of mixing), kJ/mol ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Calvet calorimetry
  • 20
  • POMD
  • 3
  • 2
  • Mass density, kg/m3 ; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Vibrating tube method
  • 18
  • POMD
  • 3
  • 2
  • Excess molar enthalpy (molar enthalpy of mixing), kJ/mol ; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Calvet calorimetry
  • 21
  • POMD
  • 3
  • 2
  • 1
  • Mass density, kg/m3 ; Liquid
  • Mole fraction - 1; Liquid
  • Mole fraction - 2; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 84
  • POMD
  • 3
  • 2
  • 1
  • Molar enthalpy of mixing with solvent, kJ/mol - 2 ; Liquid
  • Mole fraction - 1; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Calvet calorimetry
  • 84