Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Ideal and non-ideal behaviour of {1-butyl-1-methylpyrrolydinium bis(trifluoromethylsulfonyl)imide + .gamma.-butyrolactone} binary mixtures

Vranes, M.[Milan], Tot, A.[Aleksandar], Papovic, S.[Snezana], Zec, N.[Nebojsa], Dozic, S.[Sanja], Gadzuric, S.[Slobodan]
J. Chem. Thermodyn. 2015, 81, 66-76
ABSTRACT
Density, electrical conductivity and viscosity of binary liquid mixtures of 1-butyl-1-methylpyrrolydinium bis(trifluoromethylsulfonyl)imide, [bmpyrr][NTf2], with .gamma.-butyrolactone (GBL) were measured at temperatures from (293.15 to 323.15) K and at atmospheric pressure over the whole composition range. Excess molar volumes have been calculated from the experimental densities and fitted with the Redlich Kister polynomial equation. These values are positive over the whole range of ionic liquid mole fraction and at all temperatures. In the range between 0.55 and 0.6 [bmpyrr][NTf2] mole fraction, an ideal behaviour of the ionic liquid mixture with molecular solvent was observed for the first time. Other volumetric properties, such as isobaric thermal expansion coefficients, partial molar volumes and partial molar volumes at infinite dilution have been also calculated, in order to obtain information about interactions between GBL and selected ionic liquid. Positive values of these properties for both components also indicate weaker interactions between GBL and IL compared to the pure components. From the viscosity results, the Angell strength parameter was calculated and found to be 3.24 indicating that [bmpyrr][NTf2] is a fragile liquid. From the volumetric and transport properties obtained, formation of the [bmpyrr]+ micellar structures was also discussed. All the results are compared to those obtained for imidazolium-based ionic liquid with GBL.
Compounds
# Formula Name
1 C11H20F6N2O4S2 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide
2 C4H6O2 .gamma.-butyrolactone
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 7
  • POMD
  • 1
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Concentric cylinders viscometry
  • 6
  • POMD
  • 1
  • Electrical conductivity, S/m ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Direct current cell with electrodes
  • 6
  • POMD
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 7
  • POMD
  • 2
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Concentric cylinders viscometry
  • 6
  • POMD
  • 2
  • Electrical conductivity, S/m ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Direct current cell with electrodes
  • 6
  • POMD
  • 2
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 126
  • POMD
  • 2
  • 1
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Concentric cylinders viscometry
  • 66
  • POMD
  • 2
  • 1
  • Electrical conductivity, S/m ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Direct current cell with electrodes
  • 78