Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Solubility, volumetric properties and viscosity of the sustainable systems of liquid poly(ethylene glycol) 200 with imidazoliumand phosphonium-based ionic liquids: Cation and anion effects

Calado, M. S.[Marta S.], Branco, A. S. H.[Adriana S.H.], Diogo, J. C. F.[Joao C.F.], Fareleira, J. M. N. A.[Joao M.N.A.], Visak, Z. P.[Zoran P.]
J. Chem. Thermodyn. 2015, 80, 79-91
ABSTRACT
In this work, solubility, volumetric and viscosity behavior were studied for the systems containing the environmentally acceptable compounds: liquid poly(ethylene glycol) (PEG200) and three ionic liquids: 1-butyl-3-methylimidazolium dicyanamide ([C4mim][dca]), trihexyltetradecyl phosphonium dicyanamide ([P6,6,6,14][dca]) and 1-hexyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide ([C6 mim][NTf2]). The studies were performed in a temperature range (288.15 to 328.15) K and at a pressure of 0.1 MPa. For the only system that evidenced limited miscibility, namely (PEG200 + [P6,6,6,14][dca]), the temperature-composition phase diagram at 0.1 MPa was determined, mapping the existing one- and two-phase regions. In the homogeneous region of this diagram, densities and viscosities were measured and the excess molar volumes, as well as deviations in viscosity were calculated. For the other two systems, as they are always homogeneous in the temperature ranges of the present work, these measurements and calculations were performed in the full range of compositions. The molecular interactions in the studied systems were scrutinized using the obtained excess molar volumes, deviations of viscosity, as well as Kamlet Taft parameters of PEG200 and the ionic liquids. In addition, the excess molar Gibbs free energies of activation of viscous flow and the related enthalpies and entropies were calculated and introduced to take into consideration the differences in size of the molecules.
Compounds
# Formula Name
1 C12H19F6N3O4S2 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide
2 C10H15N5 1-butyl-3-methylimidazolium dicyanamide
3 C34H68N3P tetradecyl(trihexyl)phosphonium dicyanamide
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 5
  • POMD
  • 1
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 5
  • POMD
  • 1
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 5
  • POMD
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 5
  • POMD
  • 2
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 5
  • POMD
  • 2
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 5
  • POMD
  • 3
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 5
  • POMD
  • 3
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 5
  • POMD
  • 3
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 5