Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

(Solid + liquid) phase equilibria and heat capacity of (diphenyl ether + biphenyl) mixtures used as thermal energy storage materials

Cabaleiro, D., Gracia-Fernandez, C., Lugo, L.
J. Chem. Thermodyn. 2014, 74, 43-50
ABSTRACT
The (solid + liquid) phase equilibrium for eight {x diphenyl ether + (1 x) biphenyl} binary mixtures, including the eutectic mixture were studied by using a differential scanning calorimetry (DSC) technique. A good agreement was found between previous literature and experimental values here presented for the melting point and enthalpy of fusion of pure compounds. The well-known equations for Wilson and the non-random two-liquid (NRTL) were used to correlate experimental solid liquid phase equilibrium data. Moreover, the predictive mixture model UNIFAC has been employed to describe the phase diagram. With the aim to check this equipment to measure heat capacities in the quasi-isothermal Temperature- Modulated Differential Scanning Calorimetry method (TMDSC), four fluids of well-known heat capacity such as toluene, n-decane, cyclohexane and water were also studied in the liquid phase at temperatures ranging from (273.15 to 373.15) K. A good agreement with literature values was found for those fluids of pure diphenyl ether and biphenyl. Additionally, the specific isobaric heat capacities of diphenyl ether and biphenyl binary mixtures in the liquid phase up to T = 373.15 K were measured.
Compounds
# Formula Name
1 C12H10O diphenyl ether
2 C12H10 biphenyl
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Normal melting temperature, K ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DTA
  • 1
  • POMD
  • 1
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DSC
  • 1
  • POMD
  • 1
  • Molar heat capacity at constant pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Small sample (50 mg) DSC
  • 4
  • POMD
  • 2
  • Normal melting temperature, K ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DTA
  • 1
  • POMD
  • 2
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DSC
  • 1
  • POMD
  • 2
  • Molar heat capacity at constant pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Small sample (50 mg) DSC
  • 2
  • POMD
  • 2
  • 1
  • Eutectic temperature, K ; Crystal - 2
  • Crystal - 2
  • Crystal - 1
  • Liquid
  • Air at 1 atmosphere
  • DTA
  • 1
  • POMD
  • 2
  • 1
  • Eutectic composition: mole fraction - 1 ; Crystal - 2
  • Crystal - 2
  • Crystal - 1
  • Liquid
  • Air at 1 atmosphere
  • DSC
  • 1
  • POMD
  • 2
  • 1
  • Solid-liquid equilibrium temperature, K ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 2
  • DTA
  • 7
  • POMD
  • 2
  • 1
  • Solid-liquid equilibrium temperature, K ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • DTA
  • 4
  • POMD
  • 2
  • 1
  • Molar heat capacity at constant pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Small sample (50 mg) DSC
  • 33