Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Thermodynamic properties of 1-phenylnaphthalene and 2-phenylnaphthalene

Chirico, R. D.[Robert D.], Steele, W. V.[William V.], Kazakov, A. F.[Andrei F.]
J. Chem. Thermodyn. 2014, 73, 241-254
ABSTRACT
Measurements leading to the calculation of thermodynamic properties in the ideal-gas state for 1-phenylnaphthalene (Chemical Abstracts registry number [605-02-7]) and 2-phenylnaphthalene (Chemical Abstracts registry number [612-94-2]) are reported. Experimental methods for 1-phenylnaphthalene were adiabatic heat-capacity calorimetry, differential scanning calorimetry, inclined-piston manometry, comparative ebulliometry, vibrating-tube densitometry, and combustion calorimetry. For 2-phenylnaphthalene, the experimental methods were adiabatic heat-capacity calorimetry, differential scanning calorimetry, and comparative ebulliometry. Critical properties were estimated for both compounds. Molar thermodynamic functions (enthalpies, entropies, and Gibbs free energies) for the condensed and idealgas states were derived from the experimental studies at selected temperatures. Statistical calculations were performed based on molecular geometry optimization and vibrational frequencies calculated at the B3LYP/6-31+G(d,p) and B3LYP/cc-pVTZ levels of theory. Ideal-gas entropies derived with two the independent methods are shown to be in good accord for 1-phenylnaphthalene, but significant differences are apparent for 2-phenylnaphthalene. These differences are likely due to a disorder of unknown type in the crystals of 2-phenylnaphthalene at low temperatures, as evidenced by the presence of a glass-like transition in the measured heat capacities for the solid state. All experimental results are compared with property values reported in the literature.
Compounds
# Formula Name
1 CO2 carbon dioxide
2 H2O water
3 O2 oxygen
4 C16H12 1-phenylnaphthalene
5 C16H12 2-phenylnaphthalene
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 4
  • Triple point temperature, K ; Crystal
  • Crystal
  • Liquid
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 4
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal
  • Crystal
  • Liquid
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 4
  • Triple point temperature, K ; Glass
  • Glass
  • Liquid
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 4
  • Molar heat capacity at saturation pressure, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Vacuum adiabatic calorimetry
  • 56
  • POMD
  • 4
  • Molar heat capacity at saturation pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Vacuum adiabatic calorimetry
  • 23
  • POMD
  • 4
  • Molar heat capacity at saturation pressure, J/K/mol ; Glass
  • Temperature, K; Glass
  • Glass
  • Gas
  • Vacuum adiabatic calorimetry
  • 13
  • POMD
  • 4
  • Molar heat capacity at saturation pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Small sample (50 mg) DSC
  • 33
  • POMD
  • 4
  • Vapor or sublimation pressure, kPa ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 31
  • POMD
  • 4
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Vibrating tube method
  • 8
  • POMD
  • 4
  • Molar heat capacity at saturation pressure, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Vacuum adiabatic calorimetry
  • 21
  • POMD
  • 4
  • Molar entropy, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Vacuum adiabatic calorimetry
  • 21
  • POMD
  • 4
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Vacuum adiabatic calorimetry
  • 21
  • POMD
  • 4
  • Molar heat capacity at saturation pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Vacuum adiabatic calorimetry
  • 21
  • POMD
  • 4
  • Molar entropy, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Vacuum adiabatic calorimetry
  • 21
  • POMD
  • 4
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Vacuum adiabatic calorimetry
  • 21
  • POMD
  • 5
  • Triple point temperature, K ; Crystal
  • Crystal
  • Liquid
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 5
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal
  • Crystal
  • Liquid
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 5
  • Triple point temperature, K ; Metastable crystal
  • Metastable crystal
  • Crystal
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 5
  • Molar heat capacity at saturation pressure, J/K/mol ; Metastable crystal
  • Temperature, K; Metastable crystal
  • Metastable crystal
  • Gas
  • Vacuum adiabatic calorimetry
  • 66
  • POMD
  • 5
  • Molar heat capacity at saturation pressure, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Vacuum adiabatic calorimetry
  • 14
  • POMD
  • 5
  • Molar heat capacity at saturation pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Vacuum adiabatic calorimetry
  • 8
  • POMD
  • 5
  • Molar heat capacity at saturation pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Small sample (50 mg) DSC
  • 22
  • POMD
  • 5
  • Vapor or sublimation pressure, kPa ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 13
  • RXND
  • 4
  • 1
  • 2
  • 3
  • Specific internal energy of reaction at constant volume, J/g
  • Rotating bomb calorimetry
  • 1