Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Combined physical and chemical absorption of carbon dioxide in a mixture of ionic liquids

Pinto, A. M.[Alicia M.], Rodriguez, H.[Hector], Arce, A.[Alberto], Soto, A.[Ana]
J. Chem. Thermodyn. 2014, 77, 197-205
ABSTRACT
Ionic liquids have attracted great interest recently as the basis of a potential alternative technology for the capture of carbon dioxide. Beyond the inherent tunability of properties of individual ionic liquids, a further strategy in optimising the ionic liquid sorbent for this application is the use of mixtures of pure ionic liquids. Some ionic liquids absorb CO2 physically, whereas others do so chemically. Both mechanisms of absorption present advantages and disadvantages for a CO2 capture process operating in a continuous regime. In this work, a mixture of 1-ethyl-3-methylimidazolium acetate (an ionic liquid that reacts chemically with CO2) and 1-ethyl-3-methylimidazolium ethylsulfate (an ionic liquid that absorbs CO2 only through a physical mechanism) was investigated for the absorption of CO2 as a function of temperature and at pressures up to 17 bar. The absorption/desorption studies were complemented by the characterisation of thermal and physical properties of the mixture of ionic liquids, which provide extra information on the interactions at a molecular level, and are also critical for the assessment of its suitability for a proposed process and for the subsequent process design.
Compounds
# Formula Name
1 CO2 carbon dioxide
2 C8H14N2O2 1-ethyl-3-methylimidazolium acetate
3 C8H16N2O4S 1-ethyl-3-methylimidazolium ethyl sulfate
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 7
  • POMD
  • 2
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 7
  • POMD
  • 3
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 7
  • POMD
  • 3
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 7
  • POMD
  • 1
  • 2
  • Mole fraction - 1 ; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • magnetic suspension balance
  • 88
  • POMD
  • 1
  • 3
  • Mole fraction - 1 ; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • magnetic suspension balance
  • 88
  • POMD
  • 1
  • 2
  • 3
  • Mole fraction - 1 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Solvent: Mole fraction - 2; Liquid
  • Liquid
  • Gas
  • magnetic suspension balance
  • 220
  • POMD
  • 2
  • 3
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 77
  • POMD
  • 2
  • 3
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 77