Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Thermophysical profile of ethylene glycol-based ZnO nanofluids

Pastoriza-Gallego, M. J., Lugo, L., Cabaleiro, D., Legido, J. L., Pineiro, M. M.
J. Chem. Thermodyn. 2014, 73, 23-30
ABSTRACT
This work presents values of the experimental thermal conductivity, viscosity and density of homogeneous and stable nanofluids consisting of both synthesized and commercial ZnO nanoparticles dispersed in ethylene glycol (EG). The influence of variables such as particle size, temperature and volume fraction on their thermophysical properties were studied at concentrations up to 6.2%. The experimental results provide the evidence that thermal conductivity increases non-linearly with concentration and temperature within the range studied. Viscosity increases with concentration as usual for this type of dispersion and decreases with temperature. Density as a function of pressure has been also examined. The mixing volumes show little dependence on temperature and pressure over the range studied. Nevertheless, these results show a contractive behaviour on mixing and a departure from ideal behaviour, and this effect increases with concentration. The influence of particle size is significant for the measured properties, especially on viscosity. Finally, experimental values of thermal conductivity and viscosity have been compared to estimations provided by several simple theoretical models.
Compounds
# Formula Name
1 C2H6O2 1,2-ethanediol
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Thermal conductivity, W/m/K ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Hot wire method
  • 4
  • POMD
  • 1
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Concentric cylinders viscometry
  • 8