Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Heat capacity of 1-pentylamine and 1-hexylamine: Experimental determination and modeling through a two-state association model (TSAM)

Navia, P., Bessieres, D., Plantier, F.
J. Chem. Thermodyn. 2013, 57, 367-371
ABSTRACT
We report new experimental data of heat capacity of two primary amines, namely 1-pentylamine and 1- hexylamine over wide ranges of pressure [0.1 60 (MPa)] and temperature [303.15 403.15 (K)]. The experimental behaviour of the heat capacity versus temperature and pressure is analyzed. An attempt to rationalize this behaviour is performed through a two-state association model (TSAM), which allows expressing the specific effect due to association at molecular level. It appears that the heat capacity trend versus temperature is clearly governed by auto-association between amines molecules. The physical meaningful of the (TSAM) model parameters highlights the capability of this approach to capture the heat capacity behavior of the amines.
Compounds
# Formula Name
1 C5H13N 1-pentanamine
2 C6H15N 1-hexanamine
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 102
  • POMD
  • 1
  • Molar heat capacity at constant pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Small sample (50 mg) DSC
  • 35
  • POMD
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 105
  • POMD
  • 2
  • Molar heat capacity at constant pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Small sample (50 mg) DSC
  • 37